Homogenization of a microscopic pedestrians model on a convergent junction
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 21.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we establish a rigorous connection between a microscopic and a macroscopic pedestrians model on a convergent junction. At the microscopic level, we consider a “follow the leader” model far from the junction point and we assume that a rule to enter the junction point is imposed. At the macroscopic level, we obtain the Hamilton-Jacobi equation with a flux limiter condition at x = 0 introduced in Imbert and Monneau [Ann. Sci. l’École Normale Supér. 50 (2017) 357-414], To obtain our result, we inject using the “cumulative distribution functions” the microscopic model into a non-local PDE. Then, we show that the viscosity solution of the non-local PDE converges locally uniformly towards the solution of the macroscopic one.
DOI : 10.1051/mmnp/2022023

N. El Khatib 1 ; N. Forcadel 2, 3 ; M. Zaydan 1

1 Lebanese American University, Department of computer science and mathematics, Byblos campus, P.O. Box 36, Byblos, Lebanon
2 Normandie Univ, INSA de Rouen, LMI (EA 3226 – FR CNRS 3335), 76000 Rouen, France
3 685 Avenue de 1’Université, 76801 St Etienne du Rouvray cedex, France
@article{MMNP_2022_17_a30,
     author = {N. El Khatib and N. Forcadel and M. Zaydan},
     title = {Homogenization of a microscopic pedestrians model on a convergent junction},
     journal = {Mathematical modelling of natural phenomena},
     eid = {21},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022023/}
}
TY  - JOUR
AU  - N. El Khatib
AU  - N. Forcadel
AU  - M. Zaydan
TI  - Homogenization of a microscopic pedestrians model on a convergent junction
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022023/
DO  - 10.1051/mmnp/2022023
LA  - en
ID  - MMNP_2022_17_a30
ER  - 
%0 Journal Article
%A N. El Khatib
%A N. Forcadel
%A M. Zaydan
%T Homogenization of a microscopic pedestrians model on a convergent junction
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022023/
%R 10.1051/mmnp/2022023
%G en
%F MMNP_2022_17_a30
N. El Khatib; N. Forcadel; M. Zaydan. Homogenization of a microscopic pedestrians model on a convergent junction. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 21. doi : 10.1051/mmnp/2022023. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022023/

[1] Y. Achdou, S. Oudet, N. Tchou Effective transmission conditions for Hamilton-Jacobi equations defined on two domains separated by an oscillatory interface J. Math. Pures Appl. 2016 1091 1121

[2] O. Alvarez, A. Tourin Viscosity solutions of nonlinear integro-differential equations Annales de l'Institut Henri Poincaré. Analyse non linéaire 1996 293 317

[3] A. Aw, A. Klar, M. Rascle, T. Materne Derivation of continuum traffic flow models from microscopic follow-the-leader models SIAM J. Non Appl. Math. 2002 259 278

[4] G. Barles Interior gradient bounds for the mean curvature equation by viscosity solutions methods Differ. Integr. Equ. 1991 263 275

[5] G. Barles, An introduction to the theory of viscosity solutions for first-order Hamilton—Jacobi equations and applications, in Hamilton-Jacobi equations: approximations, numerical analysis and applications. Springer (2013) 49—109.

[6] G. Barles, A. Briani, E. Chasseigne, C. Imbert Flux-limited and classical viscosity solutions for regional control problems ESAIM: COCV 2018 1881 1906

[7] N. Bellomo, C. Dogbe On the modelling crowd dynamics from scaling to hyperbolic macroscopic models Math. Models Methods Appl. Sci. 2008 1317 1345

[8] C. Chalons, P. Goatin, N. Seguin General constrained conservation laws. Application to pedestrian flow modeling Netw. Heterogen. Media 2013 433

[9] R.M. Colombo, M.D. Rosini Pedestrian flows and non-classical shocks Math. Methods Appl. Sci. 2005 1553 1567

[10] M.G. Crandall, H. Ishii, P.-L. Lions User’s guide to viscosity solutions of second order partial differential equations Bull. Am. Math. Soc. 1992 1 67

[11] M.G. Crandall, P.-L. Lions Viscosity solutions of Hamilton-Jacobi equations Trans. Am. Math. Soc. 1983 1 42

[12] M. Di Francesco, S. Fagioli, M.D. Rosini and G. Russo, Follow-the-leader approximations of macroscopic models for vehicular and pedestrian flows, in Vol. 1 of Active Particles. Springer (2017) 333—378.

[13] M. Di Francesco, M.D. Rosini Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit Arch. Ratl. Mech. Anal. 2015 831 871

[14] L.C. Evans The perturbed test function method for viscosity solutions of nonlinear PDE Proc. Roy. Soc. Edinburgh Sect. A 1989 359 375

[15] N. Forcadel, C. Imbert, R. Monneau Homogenization of some particle systems with two-body interactions and of the dislocation dynamics Discr. Continu. Dyn. Syst. Ser. A 2009 785

[16] N. Forcadel, C. Imbert, R. Monneau Homogenization of accelerated Frenkel-Kontorova models with n types of particles Trans. Am. Math. Soc. 2012 6187 6227

[17] N. Forcadel, W. Salazar Homogenization of a discrete model for a bifurcation and application to traffic flow J. Mathéematiques Pures Appl. 2020 356 414

[18] N. Forcadel, W. Salazar, M. Zaydan Homogenization of second order discrete model with local perturbation and application to traffic flow Discr. Continu. Dyn. Syst. Ser. A 2017 1437 1487

[19] N. Forcadel, W. Salazar, M. Zaydan Specified homogenization of a discrete traffic model leading to an effective junction condition Commun. Pure Appl. Anal. 2018 2173

[20] G. Galise, C. Imbert, R. Monneau A junction condition by specified homogenization and application to traffic lights Anal. PDE 2015 1891 1929

[21] D.C. Gazis, R. Herman, R.W. Rothery Nonlinear follow-the-leader models of traffic flow Oper. Res. 1961 545 567

[22] D. Helbing, From microscopic to macroscopic traffic models, in A perspective look at nonlinear media. Springer (1998) 122—139.

[23] D. Helbing, P. Molnar Social force model for pedestrian dynamics Phys. Rev. E 1995 4282

[24] D. Helbing, B. Tilch Generalized force model of traffic dynamics Phys. Rev. E 1998 133

[25] S. Hoogendoorn, P.H.L. Bovy Simulation of pedestrian flows by optimal control and differential games Opt. Control Appl. Methods 2003 153 172

[26] R.L. Hughes The flow of human crowds Annu. Rev. Fluid Mech. 2003 169 182

[27] C. Imbert A non-local regularization of first order Hamilton—Jacobi equations J. Differ. Equ. 2005 218 246

[28] C. Imbert, R. Monneau Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks Annales Scientifiques de l'Ecole Normale Supérieure 2017 357 414

[29] C. Imbert, R. Monneau, H. Zidani A Hamilton-Jacobi approach to junction problems and application to traffic flows ESAIM: COCV 2013 129 166

[30] J.-P. Lebacque and M.M. Khoshyaran, Modelling vehicular traffic flow on networks using macroscopic models. Finite volumes for complex applications II (1999) 551—558.

[31] M.J. Lighthill, G.B. Whitham On kinematic waves. II. A theory of traffic flow on long crowded roads, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences The Royal Society 1955 317 345

[32] P.-L. Lions, G. Papanicolaou and S.R. Varadhan, Homogenization of Hamilton-Jacobi equations (1986).

[33] P.-L. Lions, P.E. Souganidis Well-posedness for multi-dimensional junction problems with Kirchoff-type conditions Rendiconti Lincei-Matematica e Applicazioni 2017 807 816

[34] P.I. Richards Shock waves on the highway Oper. Res. 1956 42 51

[35] M.D. Rosini, Microscopic and macroscopic models for vehicular and pedestrian flows, in Order, Disorder and Criticality: Advanced Problems of Phase Transition Theory. World Scientific (2020) 223–277.

[36] D. Slepčev Approximation schemes for propagation of fronts with nonlocal velocities and Neumann boundary conditions Nonlinear Anal.: Theory, Methods Appl. 2003 79 115

[37] A. Tordeux, G. Costeseque, M. Herty, A. Seyfried From traffic and pedestrian follow-the-leader models with reaction time to first order convection-diffusion flow models SIAM J. Appl. Math. 2018 63 79

Cité par Sources :