N. El Khatib 1 ; N. Forcadel 2, 3 ; M. Zaydan 1
@article{10_1051_mmnp_2022023,
author = {N. El Khatib and N. Forcadel and M. Zaydan},
title = {Homogenization of a microscopic pedestrians model on a convergent junction},
journal = {Mathematical modelling of natural phenomena},
eid = {21},
year = {2022},
volume = {17},
doi = {10.1051/mmnp/2022023},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022023/}
}
TY - JOUR AU - N. El Khatib AU - N. Forcadel AU - M. Zaydan TI - Homogenization of a microscopic pedestrians model on a convergent junction JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022023/ DO - 10.1051/mmnp/2022023 LA - en ID - 10_1051_mmnp_2022023 ER -
%0 Journal Article %A N. El Khatib %A N. Forcadel %A M. Zaydan %T Homogenization of a microscopic pedestrians model on a convergent junction %J Mathematical modelling of natural phenomena %D 2022 %V 17 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022023/ %R 10.1051/mmnp/2022023 %G en %F 10_1051_mmnp_2022023
N. El Khatib; N. Forcadel; M. Zaydan. Homogenization of a microscopic pedestrians model on a convergent junction. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 21. doi: 10.1051/mmnp/2022023
[1] , , Effective transmission conditions for Hamilton-Jacobi equations defined on two domains separated by an oscillatory interface J. Math. Pures Appl. 2016 1091 1121
[2] , Viscosity solutions of nonlinear integro-differential equations Annales de l'Institut Henri Poincaré. Analyse non linéaire 1996 293 317
[3] , , , Derivation of continuum traffic flow models from microscopic follow-the-leader models SIAM J. Non Appl. Math. 2002 259 278
[4] Interior gradient bounds for the mean curvature equation by viscosity solutions methods Differ. Integr. Equ. 1991 263 275
[5] G. Barles, An introduction to the theory of viscosity solutions for first-order Hamilton—Jacobi equations and applications, in Hamilton-Jacobi equations: approximations, numerical analysis and applications. Springer (2013) 49—109.
[6] , , , Flux-limited and classical viscosity solutions for regional control problems ESAIM: COCV 2018 1881 1906
[7] , On the modelling crowd dynamics from scaling to hyperbolic macroscopic models Math. Models Methods Appl. Sci. 2008 1317 1345
[8] , , General constrained conservation laws. Application to pedestrian flow modeling Netw. Heterogen. Media 2013 433
[9] , Pedestrian flows and non-classical shocks Math. Methods Appl. Sci. 2005 1553 1567
[10] , , User’s guide to viscosity solutions of second order partial differential equations Bull. Am. Math. Soc. 1992 1 67
[11] , Viscosity solutions of Hamilton-Jacobi equations Trans. Am. Math. Soc. 1983 1 42
[12] M. Di Francesco, S. Fagioli, M.D. Rosini and G. Russo, Follow-the-leader approximations of macroscopic models for vehicular and pedestrian flows, in Vol. 1 of Active Particles. Springer (2017) 333—378.
[13] , Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit Arch. Ratl. Mech. Anal. 2015 831 871
[14] The perturbed test function method for viscosity solutions of nonlinear PDE Proc. Roy. Soc. Edinburgh Sect. A 1989 359 375
[15] , , Homogenization of some particle systems with two-body interactions and of the dislocation dynamics Discr. Continu. Dyn. Syst. Ser. A 2009 785
[16] , , Homogenization of accelerated Frenkel-Kontorova models with n types of particles Trans. Am. Math. Soc. 2012 6187 6227
[17] , Homogenization of a discrete model for a bifurcation and application to traffic flow J. Mathéematiques Pures Appl. 2020 356 414
[18] , , Homogenization of second order discrete model with local perturbation and application to traffic flow Discr. Continu. Dyn. Syst. Ser. A 2017 1437 1487
[19] , , Specified homogenization of a discrete traffic model leading to an effective junction condition Commun. Pure Appl. Anal. 2018 2173
[20] , , A junction condition by specified homogenization and application to traffic lights Anal. PDE 2015 1891 1929
[21] , , Nonlinear follow-the-leader models of traffic flow Oper. Res. 1961 545 567
[22] D. Helbing, From microscopic to macroscopic traffic models, in A perspective look at nonlinear media. Springer (1998) 122—139.
[23] , Social force model for pedestrian dynamics Phys. Rev. E 1995 4282
[24] , Generalized force model of traffic dynamics Phys. Rev. E 1998 133
[25] , Simulation of pedestrian flows by optimal control and differential games Opt. Control Appl. Methods 2003 153 172
[26] The flow of human crowds Annu. Rev. Fluid Mech. 2003 169 182
[27] A non-local regularization of first order Hamilton—Jacobi equations J. Differ. Equ. 2005 218 246
[28] , Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks Annales Scientifiques de l'Ecole Normale Supérieure 2017 357 414
[29] , , A Hamilton-Jacobi approach to junction problems and application to traffic flows ESAIM: COCV 2013 129 166
[30] J.-P. Lebacque and M.M. Khoshyaran, Modelling vehicular traffic flow on networks using macroscopic models. Finite volumes for complex applications II (1999) 551—558.
[31] , On kinematic waves. II. A theory of traffic flow on long crowded roads, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences The Royal Society 1955 317 345
[32] P.-L. Lions, G. Papanicolaou and S.R. Varadhan, Homogenization of Hamilton-Jacobi equations (1986).
[33] , Well-posedness for multi-dimensional junction problems with Kirchoff-type conditions Rendiconti Lincei-Matematica e Applicazioni 2017 807 816
[34] Shock waves on the highway Oper. Res. 1956 42 51
[35] M.D. Rosini, Microscopic and macroscopic models for vehicular and pedestrian flows, in Order, Disorder and Criticality: Advanced Problems of Phase Transition Theory. World Scientific (2020) 223–277.
[36] Approximation schemes for propagation of fronts with nonlocal velocities and Neumann boundary conditions Nonlinear Anal.: Theory, Methods Appl. 2003 79 115
[37] , , , From traffic and pedestrian follow-the-leader models with reaction time to first order convection-diffusion flow models SIAM J. Appl. Math. 2018 63 79
Cité par Sources :