Voir la notice de l'article provenant de la source EDP Sciences
Enrique Álvarez 1 ; Ricardo Murillo 2 ; Ramón G. Plaza 1
@article{MMNP_2022_17_a25, author = {Enrique \'Alvarez and Ricardo Murillo and Ram\'on G. Plaza}, title = {Spectral instability of small-amplitude periodic waves for hyperbolic {non-Fickian} diffusion advection models with logistic source}, journal = {Mathematical modelling of natural phenomena}, eid = {13}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022020}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022020/} }
TY - JOUR AU - Enrique Álvarez AU - Ricardo Murillo AU - Ramón G. Plaza TI - Spectral instability of small-amplitude periodic waves for hyperbolic non-Fickian diffusion advection models with logistic source JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022020/ DO - 10.1051/mmnp/2022020 LA - en ID - MMNP_2022_17_a25 ER -
%0 Journal Article %A Enrique Álvarez %A Ricardo Murillo %A Ramón G. Plaza %T Spectral instability of small-amplitude periodic waves for hyperbolic non-Fickian diffusion advection models with logistic source %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022020/ %R 10.1051/mmnp/2022020 %G en %F MMNP_2022_17_a25
Enrique Álvarez; Ricardo Murillo; Ramón G. Plaza. Spectral instability of small-amplitude periodic waves for hyperbolic non-Fickian diffusion advection models with logistic source. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 13. doi : 10.1051/mmnp/2022020. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022020/
[1] A topological invariant arising in the stability analysis of travelling waves J. Reine Angew. Math 1990 167 212
, ,[2] Existence and spectral instability of bounded spatially periodic traveling waves for scalar viscous balance laws Quart. Appl. Math 2021 493 544
,[3] Les cycles limites de Poincare et la theorie des oscillations auto—entretenues C.R. Acad. Sci. Paris 1929 559 561
[4] Hyperbolic traveling waves driven by growth Math. Models Methods Appl. Sci 2014 1165 1195
, ,[5] J.M. Burgers, A mathematical model illustrating the theory of turbulence, in Advances in Applied Mechanics, edited by R. von Mises and T. von Karman. Academic Press Inc., New York, N.Y. (1948) 171–199.
[6] Sulla conduzione del calore Atti Sem. Mat. Fis. Univ. Modena 1949 83 101
[7] Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée C.R. Acad. Sci. Paris 1958 431 433
[8] S. Chen and J. Duan, Instability of small-amplitude periodic waves from fold-Hopf bifurcation. Preprint arXiv:2012.07484. (2020).
[9] J. Crank, The mathematics of diffusion, Clarendon Press, Oxford, second ed. (1975).
[10] Front speeds in the vanishing diffusion limit for reaction-diffusion-convection equations Differ. Integral Equ 2007 499 514
,[11] C.M. Dafermos, Hyperbolic conservation laws in continuum physics. Vol. 325 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, fourth ed. (2016).
[12] S.R. Dunbar and H.G. Othmer, On a nonlinear hyperbolic equation describing transmission lines, cell movement, and branching random walks, in Nonlinear oscillations in biology and chemistry (Salt Lake City, Utah, 1985), H.G. Othmer, ed., vol. 66 of Lecture Notes in Biomath. Springer, Berlin (1986) 274–289.
[13] N. Dunford and J.T. Schwartz, Linear operators. Part II: Spectral theory. Selfadjoint operators in Hilbert space. Wiley Classics Library, John Wiley Sons Inc., New York (1988).
[14] Traveling waves in a reaction-diffusion system: diffusion with finite velocity and Kolmogorov-Petrovskii-Piskunov kinetics Phys. Rev. E 1998 5143 5145
[15] On liquid diffusion J. Membr. Sci 1995 33 38
[16] The wave of advance of advantageous genes Ann. Eugen 1937 355 369
[17] On the structure of the spectra of periodic travelling waves J. Math. Pures Appl 1993 415 439
[18] A hyperbolic theory for advection-diffusion problems: mathematical foundations and numerical modeling Arch. Comput. Methods Eng 2010 191 211
, , , ,[19] Consistent approximate Q-conditional symmetries of PDEs: application to a hyperbolic reaction-diffusion-convection equation Z. Angew. Math. Phys 2021 25
,[20] J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Vol. 42 of Applied Mathematical Sciences. Springer-Verlag, New York (1983).
[21] Hyperbolic travelling fronts Proc. Edinburgh Math. Soc 1988 89 97
[22] Travelling fronts for correlated random walks Canad. Appl. Math. Quart 1994 27 43
[23] K.P. Hadeler, Reaction telegraph equations and random walk systems, in Stochastic and spatial structures of dynamical systems (Amsterdam, 1995), S.J. van Strien and S.M. Verduyn Lunel, eds., vol. 45 of Konink. Nederl. Akad. Wetensch. Verh. Afd. Natuurk. Eerste Reeks, North-Holland, Amsterdam (1996) 133–161. Proceedings of the meeting held in Amsterdam, January 1995.
[24] K.P. Hadeler, Reaction transport systems in biological modelling, in Mathematics inspired by biology (Martina Franca, 1997), edited by V. Capasso and O. Diekmann. vol. 1714 of Lecture Notes in Math. Springer, Berlin (1999) 95–150.
[25] J.K. Hale and H. Koçak, Dynamics and bifurcations, vol. 3 of Texts in Applied Mathematics. Springer-Verlag, New York (1991).
[26] Viscous profiles of traveling waves in scalar balance laws: the canard case Methods Appl. Anal 2003 97 117
[27] Front motion in viscous conservation laws with stiff source terms Adv. Differ. Equ 2006 721 750
,[28] Hyperbolic diffusion equation AIP Conf. Proc 2012 1337 1340
[29] Invariance principles for hyperbolic random walk systems J. Math. Anal. Appl 1997 360 374
[30] Qualitative analysis of semilinear Cattaneo equations Math. Models Methods Appl. Sci 1998 507 519
[31] P.D. Hislop and I.M. Sigal, Introduction to spectral theory. With applications to Schrödinger operators. Vol. 113 of Applied Mathematical Sciences. Springer-Verlag, New York (1996).
[32] Is diffusion too simple? Comparisons with a telegraph model of dispersal Am,. Nat 1993 779 796
[33] Abzweigung einer periodischen Losung von einer stationaren Losung eines Differentialsystems Ber. Math.-Phys. Kl. Sachs. Akad. Wiss. Leipzig 1942 1 22
[34] Spectral and modulational stability of periodic wavetrains for the nonlinear Klein-Gordon equation J. Differ. Equ 2014 4632 4703
, , ,[35] Heat waves Rev. Modern Phys 1989 41 73
,[36] A stochastic model related to the telegrapher’s equation Rocky Mountain J. Math 1974 497 509
[37] T. Kapitula and K. Promislow, Spectral and dynamical stability of nonlinear waves. Vol. 185 of Applied Mathematical Sciences. Springer-Verlag, New York (2013).
[38] T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics. Springer-Verlag, New York, Second ed. (1980).
[39] Direct characterization of spectral stability of small-amplitude periodic waves in scalar Hamiltonian problems via dispersion relation SIAM J. Math. Anal 2019 3145 3169
, ,[40] Etude de l'equation de la diffusion avec croissance de la quantite de matiere et son applicationa un probleme biologique Mosc. Univ. Bull. Math 1937 1 25
, ,[41] Y.A. Kuznetsov, Elements of applied bifurcation theory, vol. 112 of Applied Mathematical Sciences. Springer-Verlag, New York, second ed. (1998).
[42] Analytical and numerical investigation of traveling waves for the Allen- Cahn model with relaxation Math. Models Methods Appl. Sci 2016 931 985
, , ,[43] Kinetic schemes for assessing stability of traveling fronts for the Allen- Cahn equation with relaxation Appl. Numer. Math 2019 234 247
, , ,[44] Hyperbolic systems of conservation laws II Comm.. Pure Appl. Math 1957 537 566
[45] P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, no. 11 in CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1973).
[46] Hyperbolic conservation laws with relaxation Comm.. Math. Phys 1987 153 175
[47] J.E. Marsden and M. McCracken, The Hopf bifurcation and its applications. Vol. 19 of Applied Mathematical Sciences. Springer-Verlag, New York (1976).
[48] On the dynamical theory of gases Trans. Royal Soc. London 1867 49 88
[49] B. Sandstede, Stability of travelling waves, in Vol. 2 of Handbook of dynamical systems, edited by B. Fiedler. North-Holland, Amsterdam (2002) 983–1055.
[50] S.H. Strogatz, Nonlinear dynamics and chaos. With applications to physics, biology, chemistry, and engineering. Westview Press, Boulder, CO, second ed. (2015).
[51] The first Lyapunov coefficient for a class of systems 16th IFAC World Congress. IFAC Proc. Vols 2005 1205 1209
[52] Notice sur la loi que la population suit dans son accroissement Corr. Math. Phys 1838 113 121
[53] Les paradoxes de la theorie continue de l'equation de la chaleur C.R. Acad. Sci. Paris 1958 3154 3155
Cité par Sources :