Spectral instability of small-amplitude periodic waves for hyperbolic non-Fickian diffusion advection models with logistic source
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 13.

Voir la notice de l'article provenant de la source EDP Sciences

A hyperbolic model for diffusion, nonlfnear transport (or advection) and production of a scalar quantity, is considered. The model is based on a constitutive law of Cattaneo-Maxwell type expressing non-Fickian diffusion by means of a relaxation time relation. The production or source term is assumed to be of logistic type. This paper studies the existence and spectral stability properties of spatially periodic traveling wave solutions to this system. It is shown that a family of subcharacteristic periodic waves emerges from a local Hopf bifurcation around a critical value of the wave speed. These waves have bounded fundamental period and small-amplitude. In addition, it is shown that these waves are spectrally unstable as solutions to the hyperbolic system. For that purpose, it is proved that the Floquet spectrum of the linearized operator around a wave can be approximated by a linear operator whose point spectrum intersects the unstable half plane of complex numbers with positive real part.
DOI : 10.1051/mmnp/2022020

Enrique Álvarez 1 ; Ricardo Murillo 2 ; Ramón G. Plaza 1

1 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, C.P. 04510, Cd. de México, Mexico
2 Colegio de Ciencias y Humanidades, Universidad Nacional Autónoma de México, Prol. Periférico Oriente s/n Esq. Sur 24, Col. Agricola Oriental, C.P. 08500, Cd. de México, Mexico
@article{MMNP_2022_17_a25,
     author = {Enrique \'Alvarez and Ricardo Murillo and Ram\'on G. Plaza},
     title = {Spectral instability of small-amplitude periodic waves for hyperbolic {non-Fickian} diffusion advection models with logistic source},
     journal = {Mathematical modelling of natural phenomena},
     eid = {13},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022020/}
}
TY  - JOUR
AU  - Enrique Álvarez
AU  - Ricardo Murillo
AU  - Ramón G. Plaza
TI  - Spectral instability of small-amplitude periodic waves for hyperbolic non-Fickian diffusion advection models with logistic source
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022020/
DO  - 10.1051/mmnp/2022020
LA  - en
ID  - MMNP_2022_17_a25
ER  - 
%0 Journal Article
%A Enrique Álvarez
%A Ricardo Murillo
%A Ramón G. Plaza
%T Spectral instability of small-amplitude periodic waves for hyperbolic non-Fickian diffusion advection models with logistic source
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022020/
%R 10.1051/mmnp/2022020
%G en
%F MMNP_2022_17_a25
Enrique Álvarez; Ricardo Murillo; Ramón G. Plaza. Spectral instability of small-amplitude periodic waves for hyperbolic non-Fickian diffusion advection models with logistic source. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 13. doi : 10.1051/mmnp/2022020. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022020/

[1] J. Alexander, R.A. Gardner, C.K.R.T. Jones A topological invariant arising in the stability analysis of travelling waves J. Reine Angew. Math 1990 167 212

[2] E. Álvarez, R.G. Plaza Existence and spectral instability of bounded spatially periodic traveling waves for scalar viscous balance laws Quart. Appl. Math 2021 493 544

[3] A.A. Andronov Les cycles limites de Poincare et la theorie des oscillations auto—entretenues C.R. Acad. Sci. Paris 1929 559 561

[4] E. Bouin, V. Calvez, G. Nadin Hyperbolic traveling waves driven by growth Math. Models Methods Appl. Sci 2014 1165 1195

[5] J.M. Burgers, A mathematical model illustrating the theory of turbulence, in Advances in Applied Mechanics, edited by R. von Mises and T. von Karman. Academic Press Inc., New York, N.Y. (1948) 171–199.

[6] C. Cattaneo Sulla conduzione del calore Atti Sem. Mat. Fis. Univ. Modena 1949 83 101

[7] C. Cattaneo Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée C.R. Acad. Sci. Paris 1958 431 433

[8] S. Chen and J. Duan, Instability of small-amplitude periodic waves from fold-Hopf bifurcation. Preprint arXiv:2012.07484. (2020).

[9] J. Crank, The mathematics of diffusion, Clarendon Press, Oxford, second ed. (1975).

[10] E.C.M. Crooks, C. Mascia Front speeds in the vanishing diffusion limit for reaction-diffusion-convection equations Differ. Integral Equ 2007 499 514

[11] C.M. Dafermos, Hyperbolic conservation laws in continuum physics. Vol. 325 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, fourth ed. (2016).

[12] S.R. Dunbar and H.G. Othmer, On a nonlinear hyperbolic equation describing transmission lines, cell movement, and branching random walks, in Nonlinear oscillations in biology and chemistry (Salt Lake City, Utah, 1985), H.G. Othmer, ed., vol. 66 of Lecture Notes in Biomath. Springer, Berlin (1986) 274–289.

[13] N. Dunford and J.T. Schwartz, Linear operators. Part II: Spectral theory. Selfadjoint operators in Hilbert space. Wiley Classics Library, John Wiley Sons Inc., New York (1988).

[14] S. Fedotov Traveling waves in a reaction-diffusion system: diffusion with finite velocity and Kolmogorov-Petrovskii-Piskunov kinetics Phys. Rev. E 1998 5143 5145

[15] A. Fick On liquid diffusion J. Membr. Sci 1995 33 38

[16] R.A. Fisher The wave of advance of advantageous genes Ann. Eugen 1937 355 369

[17] R.A. Gardner On the structure of the spectra of periodic travelling waves J. Math. Pures Appl 1993 415 439

[18] H. Gomez, I. Colominas, F. Navarrina, J. Paris, M. Casteleiro A hyperbolic theory for advection-diffusion problems: mathematical foundations and numerical modeling Arch. Comput. Methods Eng 2010 191 211

[19] M. Gorgone, F. Oliveri Consistent approximate Q-conditional symmetries of PDEs: application to a hyperbolic reaction-diffusion-convection equation Z. Angew. Math. Phys 2021 25

[20] J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Vol. 42 of Applied Mathematical Sciences. Springer-Verlag, New York (1983).

[21] K.P. Hadeler Hyperbolic travelling fronts Proc. Edinburgh Math. Soc 1988 89 97

[22] K.P. Hadeler Travelling fronts for correlated random walks Canad. Appl. Math. Quart 1994 27 43

[23] K.P. Hadeler, Reaction telegraph equations and random walk systems, in Stochastic and spatial structures of dynamical systems (Amsterdam, 1995), S.J. van Strien and S.M. Verduyn Lunel, eds., vol. 45 of Konink. Nederl. Akad. Wetensch. Verh. Afd. Natuurk. Eerste Reeks, North-Holland, Amsterdam (1996) 133–161. Proceedings of the meeting held in Amsterdam, January 1995.

[24] K.P. Hadeler, Reaction transport systems in biological modelling, in Mathematics inspired by biology (Martina Franca, 1997), edited by V. Capasso and O. Diekmann. vol. 1714 of Lecture Notes in Math. Springer, Berlin (1999) 95–150.

[25] J.K. Hale and H. Koçak, Dynamics and bifurcations, vol. 3 of Texts in Applied Mathematics. Springer-Verlag, New York (1991).

[26] J. Harterich Viscous profiles of traveling waves in scalar balance laws: the canard case Methods Appl. Anal 2003 97 117

[27] J. Harterich, K. Sakamoto Front motion in viscous conservation laws with stiff source terms Adv. Differ. Equ 2006 721 750

[28] L. Herrmann Hyperbolic diffusion equation AIP Conf. Proc 2012 1337 1340

[29] T. Hillen Invariance principles for hyperbolic random walk systems J. Math. Anal. Appl 1997 360 374

[30] T. Hillen Qualitative analysis of semilinear Cattaneo equations Math. Models Methods Appl. Sci 1998 507 519

[31] P.D. Hislop and I.M. Sigal, Introduction to spectral theory. With applications to Schrödinger operators. Vol. 113 of Applied Mathematical Sciences. Springer-Verlag, New York (1996).

[32] E.E. Holmes Is diffusion too simple? Comparisons with a telegraph model of dispersal Am,. Nat 1993 779 796

[33] E. Hopf Abzweigung einer periodischen Losung von einer stationaren Losung eines Differentialsystems Ber. Math.-Phys. Kl. Sachs. Akad. Wiss. Leipzig 1942 1 22

[34] C.K.R.T. Jones, R. Marangell, P.D. Miller, R.G. Plaza Spectral and modulational stability of periodic wavetrains for the nonlinear Klein-Gordon equation J. Differ. Equ 2014 4632 4703

[35] D.D. Joseph, L. Preziosi Heat waves Rev. Modern Phys 1989 41 73

[36] M. Kac A stochastic model related to the telegrapher’s equation Rocky Mountain J. Math 1974 497 509

[37] T. Kapitula and K. Promislow, Spectral and dynamical stability of nonlinear waves. Vol. 185 of Applied Mathematical Sciences. Springer-Verlag, New York (2013).

[38] T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics. Springer-Verlag, New York, Second ed. (1980).

[39] R. Kollar, B. Deconinck, O. Trichtchenko Direct characterization of spectral stability of small-amplitude periodic waves in scalar Hamiltonian problems via dispersion relation SIAM J. Math. Anal 2019 3145 3169

[40] A.N. Kolmogorov, I. Petrovsky, N. Piskunov Etude de l'equation de la diffusion avec croissance de la quantite de matiere et son applicationa un probleme biologique Mosc. Univ. Bull. Math 1937 1 25

[41] Y.A. Kuznetsov, Elements of applied bifurcation theory, vol. 112 of Applied Mathematical Sciences. Springer-Verlag, New York, second ed. (1998).

[42] C. Lattanzio, C. Mascia, R.G. Plaza, C. Simeoni Analytical and numerical investigation of traveling waves for the Allen- Cahn model with relaxation Math. Models Methods Appl. Sci 2016 931 985

[43] C. Lattanzio, C. Mascia, R.G. Plaza, C. Simeoni Kinetic schemes for assessing stability of traveling fronts for the Allen- Cahn equation with relaxation Appl. Numer. Math 2019 234 247

[44] P.D. Lax Hyperbolic systems of conservation laws II Comm.. Pure Appl. Math 1957 537 566

[45] P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, no. 11 in CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1973).

[46] T.-P. Liu Hyperbolic conservation laws with relaxation Comm.. Math. Phys 1987 153 175

[47] J.E. Marsden and M. McCracken, The Hopf bifurcation and its applications. Vol. 19 of Applied Mathematical Sciences. Springer-Verlag, New York (1976).

[48] J.C. Maxwell On the dynamical theory of gases Trans. Royal Soc. London 1867 49 88

[49] B. Sandstede, Stability of travelling waves, in Vol. 2 of Handbook of dynamical systems, edited by B. Fiedler. North-Holland, Amsterdam (2002) 983–1055.

[50] S.H. Strogatz, Nonlinear dynamics and chaos. With applications to physics, biology, chemistry, and engineering. Westview Press, Boulder, CO, second ed. (2015).

[51] G.F. Verduzco The first Lyapunov coefficient for a class of systems 16th IFAC World Congress. IFAC Proc. Vols 2005 1205 1209

[52] P.-F. Verhulst Notice sur la loi que la population suit dans son accroissement Corr. Math. Phys 1838 113 121

[53] P. Vernotte Les paradoxes de la theorie continue de l'equation de la chaleur C.R. Acad. Sci. Paris 1958 3154 3155

Cité par Sources :