Voir la notice de l'article provenant de la source EDP Sciences
Samiran Ghosh 1 ; Malay Banerjee 1 ; Vitaly Volpert 2, 3
@article{MMNP_2022_17_a4, author = {Samiran Ghosh and Malay Banerjee and Vitaly Volpert}, title = {Immuno-Epidemiological {Model-Based} {Prediction} of {Further} {Covid-19} {Epidemic} {Outbreaks} {Due} to {Immunity} {Waning}}, journal = {Mathematical modelling of natural phenomena}, eid = {9}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022017}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022017/} }
TY - JOUR AU - Samiran Ghosh AU - Malay Banerjee AU - Vitaly Volpert TI - Immuno-Epidemiological Model-Based Prediction of Further Covid-19 Epidemic Outbreaks Due to Immunity Waning JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022017/ DO - 10.1051/mmnp/2022017 LA - en ID - MMNP_2022_17_a4 ER -
%0 Journal Article %A Samiran Ghosh %A Malay Banerjee %A Vitaly Volpert %T Immuno-Epidemiological Model-Based Prediction of Further Covid-19 Epidemic Outbreaks Due to Immunity Waning %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022017/ %R 10.1051/mmnp/2022017 %G en %F MMNP_2022_17_a4
Samiran Ghosh; Malay Banerjee; Vitaly Volpert. Immuno-Epidemiological Model-Based Prediction of Further Covid-19 Epidemic Outbreaks Due to Immunity Waning. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 9. doi : 10.1051/mmnp/2022017. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022017/
[1] Vaccination in a two-group epidemic model Appl. Math. Lett 2021 107197
, , ,[2] Age-stratified discrete compartment model of the COVID-19 epidemic with application to Switzerland Sci. Rep 2020 1 12
,[3] L. Berec, M. Smid, L. Pribylova, O. Majek, T. Pavlik, J. Jarkovsky, M. Zajicek, J. Weiner, T. Barusova and J. Trnka, Real-life protection provided by vaccination, booster doses and previous infection against covid-19 infection, hospitalisation or death over time in the Czech Republic: a whole country retrospective view. medRxiv (2021).
[4] Multi-patch and multi-group epidemic models: a new framework J. Math. Biol 2018 107 134
,[5] P. Bosetti, C.T. Kiem, A. Andronico, J. Paireau, C. Emergen and S. Cauchemez, Complément d’Analyse. Impact du sous- variant BA.2 et du relâchement des mesures de contrôle en France métropolitaine (2022).
[6] A. Bouchnita, S.J. Fox, J.L.H.-D. Michael Lachmann, G. Gibson and L.A. Meyers, COVID-19 Scenario Projections: The Emergence of Omicron in the US - January 2022. The University of Texas CO VID-19 Modeling Consortium (2022).
[7] A hybrid multi-scale model of COVID-19 transmission dynamics to assess the potential of non-pharmaceutical interventions Chaos Solitons Fractals 2020
,[8] F. Brauer, C. Castillo-Chavez and Z. Feng, vol. 32 of Mathematical models in epidemiology. Springer (2019).
[9] M.C. Chan, K.P. Hui, J. Ho, M.C. Cheung, K.C. Ng, R. Ching, K.L. Lai, T. Kam, H. Gu, K.-Y. Sit et al., SARS-CoV-2 Omicron variant replication in human respiratory tract ex vivo, https://doi.org/10.21203/rs.3.rs-1189219/v1, (2021).
[10] H. Chemaitelly et. al., Duration of mRNA vaccine protection againstSARS-CoV-2 Omicron BA. 1 and BA. 2 subvariants in Qatar. medRxiv (2022).
[11] F. Ebrahim, S. Tabal, Y. Lamami, I.M. Alhudiri, S.E. El Meshri, S.M. Al Dwigen, R. Arfa, A. Alboeshi, H.A. Alemam, F. Abuhtna et al., Anti-SARS-CoV-2 IgG antibodies after recovery from COVID-19 or vaccination in Libyan population: comparison of four vaccines. medRxiv (2022).
[12] European Centre for Disease Prevention and Control, Seasonal influenza 2018-2019. ECDC. Annual Epidemiological Report for 2018 (2019).
[13] S. Ghosh, V. Volpert and M. Banerjee, An epidemic model with time-distributed recovery and death rates. Preprint.
[14] Modeling host-parasite coevolution: a nested approach based on mechanistic models J. Theor. Biol 2002 289 308
,[15] The mathematics of infectious diseases SIAM Rev 2000 599 653
[16] The application of simulation models and systems analysis in epidemiology: a review Prevent. Veter. Med 1993 81 99
,[17] Networks and epidemic models J. Royal Soc. Interface 2005 295 307
,[18] C.T. Kelley, Iterative methods for optimization, SIAM (1999).
[19] Continued need for non-pharmaceutical interventions after COVID-19 vaccination in long-term-care facilities Sci. Rep 2021 1 5
, , , , , , ,[20] Antigenic waves of virus-immune coevolution Proc. Natl. Acad. Sci 2021 e2103398118
, , ,[21] D.H. May, B. Rubin, S.C. Dalai, K. Patel, S. Shafiani, R. Elyanow, M.T. Noakes, T.M. Snyder and H.S. Robins, Omicron variant partially escapes the T-cell response induced by SARS-CoV-2 vaccines, https://www.adaptivebiotech.com/wp-content/uploads/2021/12/omicron_t_cell_impact.pdf, (2021).
[22] B. Meng, A. Abdullahi, I.A. Ferreira, N. Goonawardane, A. Saito, I. Kimura, D. Yamasoba, P.P. Gerber, S. Fatihi, S. Rathore et al., Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts tropism and fusogenicity, Nature (2022) 1–1.
[23] An epidemiological network model for disease outbreak detection PLoS Med 2007 e210
, ,[24] Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome sequencing and agent-based modeling Nat. Med 2020 1398 1404
, , , , , , , , ,[25] R.P. Sharma, S. Gautam, P. Sharma, R. Singh, H. Sharma, D. Parsoya, F. Deba, N. Bhomia, V.A. Potdar, P.D. Yadav et al., Clinico epidemiological profile of Omicron variant of SARS CoV2 in Rajasthan. medRxiv (2022).
[26] Extended SEIQR type model for COVID-19 epidemic and data analysis Math. Biosci. Eng 2020 7562 7604
, ,[27] Controlling the pandemic during the SARS-CoV-2 vaccination rollout Nat. Commun 2021 1 15
, , , , , , ,[28] J. Yu, A.Y. Collier et al., Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. N. Engl. J. Med. (2022).
[29] Threshold dynamics in an SEIRS model with latency and temporary immunity J. Math. Biol 2014 875 904
,Cité par Sources :