Immuno-Epidemiological Model-Based Prediction of Further Covid-19 Epidemic Outbreaks Due to Immunity Waning
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 9.

Voir la notice de l'article provenant de la source EDP Sciences

We develop a new data-driven immuno-epidemiological model with distributed infectivity, recovery and death rates determined from the epidemiological, clinical and experimental data. Immunity in the population is taken into account through the time-dependent number of vaccinated people with different numbers of doses and through the acquired immunity for recovered individuals. The model is validated with the available data. We show that for the first time from the beginning of pandemic COVID-19 some countries reached collective immunity. However, the epidemic continues because of the emergence of new variant BA.2 with a larger immunity escape or disease transmission rate than the previous BA.l variant. Large epidemic outbreaks can be expected several months later due to immunity waning. These outbreaks can be restrained by an intensive booster vaccination.
DOI : 10.1051/mmnp/2022017

Samiran Ghosh 1 ; Malay Banerjee 1 ; Vitaly Volpert 2, 3

1 Indian Institute of Technology Kanpur, Kanpur 208016, India
2 Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France
3 Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation
@article{MMNP_2022_17_a4,
     author = {Samiran Ghosh and Malay Banerjee and Vitaly Volpert},
     title = {Immuno-Epidemiological {Model-Based} {Prediction} of {Further} {Covid-19} {Epidemic} {Outbreaks} {Due} to {Immunity} {Waning}},
     journal = {Mathematical modelling of natural phenomena},
     eid = {9},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022017/}
}
TY  - JOUR
AU  - Samiran Ghosh
AU  - Malay Banerjee
AU  - Vitaly Volpert
TI  - Immuno-Epidemiological Model-Based Prediction of Further Covid-19 Epidemic Outbreaks Due to Immunity Waning
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022017/
DO  - 10.1051/mmnp/2022017
LA  - en
ID  - MMNP_2022_17_a4
ER  - 
%0 Journal Article
%A Samiran Ghosh
%A Malay Banerjee
%A Vitaly Volpert
%T Immuno-Epidemiological Model-Based Prediction of Further Covid-19 Epidemic Outbreaks Due to Immunity Waning
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022017/
%R 10.1051/mmnp/2022017
%G en
%F MMNP_2022_17_a4
Samiran Ghosh; Malay Banerjee; Vitaly Volpert. Immuno-Epidemiological Model-Based Prediction of Further Covid-19 Epidemic Outbreaks Due to Immunity Waning. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 9. doi : 10.1051/mmnp/2022017. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022017/

[1] S. Anita, M. Banerjee, S. Ghosh, V. Volpert Vaccination in a two-group epidemic model Appl. Math. Lett 2021 107197

[2] F. Balabdaoui, D. Mohr Age-stratified discrete compartment model of the COVID-19 epidemic with application to Switzerland Sci. Rep 2020 1 12

[3] L. Berec, M. Smid, L. Pribylova, O. Majek, T. Pavlik, J. Jarkovsky, M. Zajicek, J. Weiner, T. Barusova and J. Trnka, Real-life protection provided by vaccination, booster doses and previous infection against covid-19 infection, hospitalisation or death over time in the Czech Republic: a whole country retrospective view. medRxiv (2021).

[4] D. Bichara, A. Iggidr Multi-patch and multi-group epidemic models: a new framework J. Math. Biol 2018 107 134

[5] P. Bosetti, C.T. Kiem, A. Andronico, J. Paireau, C. Emergen and S. Cauchemez, Complément d’Analyse. Impact du sous- variant BA.2 et du relâchement des mesures de contrôle en France métropolitaine (2022).

[6] A. Bouchnita, S.J. Fox, J.L.H.-D. Michael Lachmann, G. Gibson and L.A. Meyers, COVID-19 Scenario Projections: The Emergence of Omicron in the US - January 2022. The University of Texas CO VID-19 Modeling Consortium (2022).

[7] A. Bouchnita, A. Jebrane A hybrid multi-scale model of COVID-19 transmission dynamics to assess the potential of non-pharmaceutical interventions Chaos Solitons Fractals 2020

[8] F. Brauer, C. Castillo-Chavez and Z. Feng, vol. 32 of Mathematical models in epidemiology. Springer (2019).

[9] M.C. Chan, K.P. Hui, J. Ho, M.C. Cheung, K.C. Ng, R. Ching, K.L. Lai, T. Kam, H. Gu, K.-Y. Sit et al., SARS-CoV-2 Omicron variant replication in human respiratory tract ex vivo, https://doi.org/10.21203/rs.3.rs-1189219/v1, (2021).

[10] H. Chemaitelly et. al., Duration of mRNA vaccine protection againstSARS-CoV-2 Omicron BA. 1 and BA. 2 subvariants in Qatar. medRxiv (2022).

[11] F. Ebrahim, S. Tabal, Y. Lamami, I.M. Alhudiri, S.E. El Meshri, S.M. Al Dwigen, R. Arfa, A. Alboeshi, H.A. Alemam, F. Abuhtna et al., Anti-SARS-CoV-2 IgG antibodies after recovery from COVID-19 or vaccination in Libyan population: comparison of four vaccines. medRxiv (2022).

[12] European Centre for Disease Prevention and Control, Seasonal influenza 2018-2019. ECDC. Annual Epidemiological Report for 2018 (2019).

[13] S. Ghosh, V. Volpert and M. Banerjee, An epidemic model with time-distributed recovery and death rates. Preprint.

[14] M.A. Gilchrist, A. Sasaki Modeling host-parasite coevolution: a nested approach based on mechanistic models J. Theor. Biol 2002 289 308

[15] H.W. Hethcote The mathematics of infectious diseases SIAM Rev 2000 599 653

[16] H.S. Hurd, J.B. Kaneene The application of simulation models and systems analysis in epidemiology: a review Prevent. Veter. Med 1993 81 99

[17] M.J. Keeling, K.T. Eames Networks and epidemic models J. Royal Soc. Interface 2005 295 307

[18] C.T. Kelley, Iterative methods for optimization, SIAM (1999).

[19] J. Love, L.T. Keegan, F.J. Angulo, J.M. Mclaughlin, K.M. Shea, D.L. Swerdlow, M.H. Samore, D.J. Toth Continued need for non-pharmaceutical interventions after COVID-19 vaccination in long-term-care facilities Sci. Rep 2021 1 5

[20] J. Marchi, M. Lassig, A.M. Walczak, T. Mora Antigenic waves of virus-immune coevolution Proc. Natl. Acad. Sci 2021 e2103398118

[21] D.H. May, B. Rubin, S.C. Dalai, K. Patel, S. Shafiani, R. Elyanow, M.T. Noakes, T.M. Snyder and H.S. Robins, Omicron variant partially escapes the T-cell response induced by SARS-CoV-2 vaccines, https://www.adaptivebiotech.com/wp-content/uploads/2021/12/omicron_t_cell_impact.pdf, (2021).

[22] B. Meng, A. Abdullahi, I.A. Ferreira, N. Goonawardane, A. Saito, I. Kimura, D. Yamasoba, P.P. Gerber, S. Fatihi, S. Rathore et al., Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts tropism and fusogenicity, Nature (2022) 1–1.

[23] B.Y. Reis, I.S. Kohane, K.D. Mandl An epidemiological network model for disease outbreak detection PLoS Med 2007 e210

[24] R.J. Rockett, A. Arnott, C. Lam, R. Sadsad, V. Timms, K.-A. Gray, J.-S. Eden, S. Chang, M. Gall, J. Draper Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome sequencing and agent-based modeling Nat. Med 2020 1398 1404

[25] R.P. Sharma, S. Gautam, P. Sharma, R. Singh, H. Sharma, D. Parsoya, F. Deba, N. Bhomia, V.A. Potdar, P.D. Yadav et al., Clinico epidemiological profile of Omicron variant of SARS CoV2 in Rajasthan. medRxiv (2022).

[26] S. Sharma, V. Volpert, M. Banerjee Extended SEIQR type model for COVID-19 epidemic and data analysis Math. Biosci. Eng 2020 7562 7604

[27] J. Viana, C.H. Van Dorp, A. Nunes, M.C. Gomes, M. Van Boven, M.E. Kretzschmar, M. Veldhoen, G. Rozhnova Controlling the pandemic during the SARS-CoV-2 vaccination rollout Nat. Commun 2021 1 15

[28] J. Yu, A.Y. Collier et al., Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. N. Engl. J. Med. (2022).

[29] Y. Yuan, J. Bélair Threshold dynamics in an SEIRS model with latency and temporary immunity J. Math. Biol 2014 875 904

Cité par Sources :