A. Bandera 1, 2 ; S. Fernández-García 1, 2 ; M. Gómez-Mármol 1 ; A. Vidal 3
@article{10_1051_mmnp_2022016,
author = {A. Bandera and S. Fern\'andez-Garc{\'\i}a and M. G\'omez-M\'armol and A. Vidal},
title = {A multiple timescale network model of intracellular calcium concentrations in coupled neurons: {Insights} from {ROM} simulations},
journal = {Mathematical modelling of natural phenomena},
eid = {11},
year = {2022},
volume = {17},
doi = {10.1051/mmnp/2022016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022016/}
}
TY - JOUR AU - A. Bandera AU - S. Fernández-García AU - M. Gómez-Mármol AU - A. Vidal TI - A multiple timescale network model of intracellular calcium concentrations in coupled neurons: Insights from ROM simulations JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022016/ DO - 10.1051/mmnp/2022016 LA - en ID - 10_1051_mmnp_2022016 ER -
%0 Journal Article %A A. Bandera %A S. Fernández-García %A M. Gómez-Mármol %A A. Vidal %T A multiple timescale network model of intracellular calcium concentrations in coupled neurons: Insights from ROM simulations %J Mathematical modelling of natural phenomena %D 2022 %V 17 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022016/ %R 10.1051/mmnp/2022016 %G en %F 10_1051_mmnp_2022016
A. Bandera; S. Fernández-García; M. Gómez-Mármol; A. Vidal. A multiple timescale network model of intracellular calcium concentrations in coupled neurons: Insights from ROM simulations. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 11. doi: 10.1051/mmnp/2022016
[1] , , , , Synchronization in complex networks Phys. Rep. 2008 93 153
[2] Devil’s staircase Phys. Today 1986 38 45
[3] , , Connection graph stability method for synchronized coupled chaotic systems Physica D 2004 188 206
[4] , Chaotic synchronization in ensembles of coupled neurons modeled by the FitzHugh-Rinzel system Radiophys. Quantum Electr. 2006 910 921
[5] , On linearly coupled relaxation oscillations Quart. Appl. Math. 1984 193 219
[6] , , , Chasse au canard (première partie) Collectanea Math. 1981 37 76
[7] , , Mixed mode oscillations due to the generalized canard phenomenon Fields Inst. Commun. 2006 39 63
[8] S.A. Campbell and M. Waite, Multistability in coupled FitzHugh-Nagumo oscillators. Science Direct Working Paper (2001) (S1574-0358), 04.
[9] , , Galerkin approximation with proper orthogonal decomposition: new error estimates and illustrative examples ESAIM: M2AN 2012 731 757
[10] , , , Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies SIAM J. Appl. Math. 2004 69 92
[11] , , The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators Neural Comput. 2001 1285 1310
[12] , Canards, clusters, and synchronization in a weakly coupled interneuron model SIAM J. Appl. Dyn. Syst. 2009 253 278
[13] , , , Canard-mediated (de) synchronization in coupled phantom bursters SIAM J. Appl. Dyn. Syst. 2016 580 608
[14] , , Synchronization of weakly coupled canard oscillators Physica D 2017 46 61
[15] , , , , Hierarchy of neural organization in the embryonic spinal cord: Granger-causality graph analysis of in vivo calcium imaging data IEEE Trans. Neural Syst. Rehab. Eng. 2014 333 341
[16] , Symmetric coupling of multiple timescale systems with mixed-mode oscillations and synchronization Physica D 2020 132129
[17] Impulses and physiological states in theoretical models of nerve membrane Biophys. J. 1961 445 466
[18] Singular Hopf bifurcation in systems with two slow variables SIAM J. Appl. Dyn. Syst. 2008 1355 1377
[19] , Unfoldings of singular Hopf bifurcation SIAM J. Appl. Dyn. Syst. 2012 1325 1359
[20] , A quantitative description of membrane current and its application to conduction and excitation in nerve J. Physiol. 1952 500 544
[21] Phase equations for relaxation oscillators SIAM J. Appl. Math. 2000 1789 1804
[22] , , , , , , Temporospatial coupling of networked synaptic activation of AMPA-type glutamate receptor channels and calcium transients in cultured motoneurons Neuroscience 2006 1019 1029
[23] , , , Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron Chaos 2008 015106
[24] , , A network model of the periodic synchronization process in the dynamics of calcium concentration in GnRH neurons J. Math. Neurosci. 2013 1 24
[25] , Local analysis near a folded saddle-node singularity J. Differ. Equ. 2010 2841 2888
[26] , Model reduction of dynamical systems by proper orthogonal decomposition: error bounds and comparison of methods using snapshots from the solution and the time derivatives J. Comput. Appl. Math. 2018 553 573
[27] , Galerkin proper orthogonal decomposition methods for parabolic problems Em Numer. Math. 2001 117 148
[28] , Stable antiphase oscillations in a network of electrically coupled model neurons SIAM J. Appl. Dyn. Syst. 2013 1 27
[29] , Stability of antiphase oscillations in a network of inhibitory neurons SIAM J. Appl. Dyn. Syst. 2015 448 480
[30] , , An active pulse transmission line simulating nerve axon Proc. IRE 1962 2061 2070
[31] , A new look at proper orthogonal decomposition SIAM J. Numer. Anal. 2003 1893 1925
[32] , , When two wrongs make a right: synchronized neuronal bursting from combined electrical and inhibitory coupling Phil. Trans. R Soc. A 2017 20160282
[33] , Localized and asynchronous patterns via canards in coupled calcium oscillators Physica D 2006 46 61
[34] , , , Wild oscillations in a nonlinear neuron model with resets:(II) Mixed-mode oscillations Discrete Continu. Dyn. Syst. B 2017 4003 4039
[35] Determining thresholds of complete synchronization, and application World Sci. Ser. Nonlinear Sci. A 2009
[36] , Dynamics of two strongly coupled relaxation oscillators SIAM J. Appl. Math. 1986 56 67
[37] , A simplified model of coupled relaxation oscillators Int. J. Non-linear Mech. 1987 283 289
[38] , , , In vivo two-photon calcium imaging of neuronal networks Proc. Natl. Acad. Sci. 2003 7319 7324
[39] , Canards in R3 J. Differ. Equ. 2001 419 453
[40] , , , Stability of anti-phase and in-phase locking by electrical coupling but not fast inhibition alone SIAM J. Appl. Dyn. Syst. 2011 1127 1153
[41] S. Volkwein, Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling. Lecture Notes. University of Konstanz, Konstanz (2013).
[42] , The astrocyte odyssey Progr. Neurobiol. 2008 342 367
[43] Existence and bifurcation of canards in R3 in the case of a folded node SIAM J. Appl. Dyn. Syst. 2005 101 139
[44] , , , , , Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces J. Neurosci. Methods 2002 123 131
[45] , , , A canard mechanism for localization in systems of globally coupled oscillators SIAM J. Appl. Math. 2003 1998 2019
Cité par Sources :