Voir la notice de l'article provenant de la source EDP Sciences
A. Bandera 1, 2 ; S. Fernández-García 1, 2 ; M. Gómez-Mármol 1 ; A. Vidal 3
@article{MMNP_2022_17_a6, author = {A. Bandera and S. Fern\'andez-Garc{\'\i}a and M. G\'omez-M\'armol and A. Vidal}, title = {A multiple timescale network model of intracellular calcium concentrations in coupled neurons: {Insights} from {ROM} simulations}, journal = {Mathematical modelling of natural phenomena}, eid = {11}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022016}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022016/} }
TY - JOUR AU - A. Bandera AU - S. Fernández-García AU - M. Gómez-Mármol AU - A. Vidal TI - A multiple timescale network model of intracellular calcium concentrations in coupled neurons: Insights from ROM simulations JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022016/ DO - 10.1051/mmnp/2022016 LA - en ID - MMNP_2022_17_a6 ER -
%0 Journal Article %A A. Bandera %A S. Fernández-García %A M. Gómez-Mármol %A A. Vidal %T A multiple timescale network model of intracellular calcium concentrations in coupled neurons: Insights from ROM simulations %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022016/ %R 10.1051/mmnp/2022016 %G en %F MMNP_2022_17_a6
A. Bandera; S. Fernández-García; M. Gómez-Mármol; A. Vidal. A multiple timescale network model of intracellular calcium concentrations in coupled neurons: Insights from ROM simulations. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 11. doi : 10.1051/mmnp/2022016. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022016/
[1] Synchronization in complex networks Phys. Rep. 2008 93 153
, , , ,[2] Devil’s staircase Phys. Today 1986 38 45
[3] Connection graph stability method for synchronized coupled chaotic systems Physica D 2004 188 206
, ,[4] Chaotic synchronization in ensembles of coupled neurons modeled by the FitzHugh-Rinzel system Radiophys. Quantum Electr. 2006 910 921
,[5] On linearly coupled relaxation oscillations Quart. Appl. Math. 1984 193 219
,[6] Chasse au canard (première partie) Collectanea Math. 1981 37 76
, , ,[7] Mixed mode oscillations due to the generalized canard phenomenon Fields Inst. Commun. 2006 39 63
, ,[8] S.A. Campbell and M. Waite, Multistability in coupled FitzHugh-Nagumo oscillators. Science Direct Working Paper (2001) (S1574-0358), 04.
[9] Galerkin approximation with proper orthogonal decomposition: new error estimates and illustrative examples ESAIM: M2AN 2012 731 757
, ,[10] Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies SIAM J. Appl. Math. 2004 69 92
, , ,[11] The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators Neural Comput. 2001 1285 1310
, ,[12] Canards, clusters, and synchronization in a weakly coupled interneuron model SIAM J. Appl. Dyn. Syst. 2009 253 278
,[13] Canard-mediated (de) synchronization in coupled phantom bursters SIAM J. Appl. Dyn. Syst. 2016 580 608
, , ,[14] Synchronization of weakly coupled canard oscillators Physica D 2017 46 61
, ,[15] Hierarchy of neural organization in the embryonic spinal cord: Granger-causality graph analysis of in vivo calcium imaging data IEEE Trans. Neural Syst. Rehab. Eng. 2014 333 341
, , , ,[16] Symmetric coupling of multiple timescale systems with mixed-mode oscillations and synchronization Physica D 2020 132129
,[17] Impulses and physiological states in theoretical models of nerve membrane Biophys. J. 1961 445 466
[18] Singular Hopf bifurcation in systems with two slow variables SIAM J. Appl. Dyn. Syst. 2008 1355 1377
[19] Unfoldings of singular Hopf bifurcation SIAM J. Appl. Dyn. Syst. 2012 1325 1359
,[20] A quantitative description of membrane current and its application to conduction and excitation in nerve J. Physiol. 1952 500 544
,[21] Phase equations for relaxation oscillators SIAM J. Appl. Math. 2000 1789 1804
[22] Temporospatial coupling of networked synaptic activation of AMPA-type glutamate receptor channels and calcium transients in cultured motoneurons Neuroscience 2006 1019 1029
, , , , , ,[23] Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron Chaos 2008 015106
, , ,[24] A network model of the periodic synchronization process in the dynamics of calcium concentration in GnRH neurons J. Math. Neurosci. 2013 1 24
, ,[25] Local analysis near a folded saddle-node singularity J. Differ. Equ. 2010 2841 2888
,[26] Model reduction of dynamical systems by proper orthogonal decomposition: error bounds and comparison of methods using snapshots from the solution and the time derivatives J. Comput. Appl. Math. 2018 553 573
,[27] Galerkin proper orthogonal decomposition methods for parabolic problems Em Numer. Math. 2001 117 148
,[28] Stable antiphase oscillations in a network of electrically coupled model neurons SIAM J. Appl. Dyn. Syst. 2013 1 27
,[29] Stability of antiphase oscillations in a network of inhibitory neurons SIAM J. Appl. Dyn. Syst. 2015 448 480
,[30] An active pulse transmission line simulating nerve axon Proc. IRE 1962 2061 2070
, ,[31] A new look at proper orthogonal decomposition SIAM J. Numer. Anal. 2003 1893 1925
,[32] When two wrongs make a right: synchronized neuronal bursting from combined electrical and inhibitory coupling Phil. Trans. R Soc. A 2017 20160282
, ,[33] Localized and asynchronous patterns via canards in coupled calcium oscillators Physica D 2006 46 61
,[34] Wild oscillations in a nonlinear neuron model with resets:(II) Mixed-mode oscillations Discrete Continu. Dyn. Syst. B 2017 4003 4039
, , ,[35] Determining thresholds of complete synchronization, and application World Sci. Ser. Nonlinear Sci. A 2009
[36] Dynamics of two strongly coupled relaxation oscillators SIAM J. Appl. Math. 1986 56 67
,[37] A simplified model of coupled relaxation oscillators Int. J. Non-linear Mech. 1987 283 289
,[38] In vivo two-photon calcium imaging of neuronal networks Proc. Natl. Acad. Sci. 2003 7319 7324
, , ,[39] Canards in R3 J. Differ. Equ. 2001 419 453
,[40] Stability of anti-phase and in-phase locking by electrical coupling but not fast inhibition alone SIAM J. Appl. Dyn. Syst. 2011 1127 1153
, , ,[41] S. Volkwein, Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling. Lecture Notes. University of Konstanz, Konstanz (2013).
[42] The astrocyte odyssey Progr. Neurobiol. 2008 342 367
,[43] Existence and bifurcation of canards in R3 in the case of a folded node SIAM J. Appl. Dyn. Syst. 2005 101 139
[44] Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces J. Neurosci. Methods 2002 123 131
, , , , ,[45] A canard mechanism for localization in systems of globally coupled oscillators SIAM J. Appl. Math. 2003 1998 2019
, , ,Cité par Sources :