Voir la notice de l'article provenant de la source EDP Sciences
Shahriar Seddighi Chaharborj 1 ; Jalal Hassanzadeh Asl 1 ; Babak Mohammadi 2
@article{MMNP_2022_17_a2, author = {Shahriar Seddighi Chaharborj and Jalal Hassanzadeh Asl and Babak Mohammadi}, title = {Optimal control strategy to control pandemic {Covid-19} using {MSILIHR_V} {Model}}, journal = {Mathematical modelling of natural phenomena}, eid = {23}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022015}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022015/} }
TY - JOUR AU - Shahriar Seddighi Chaharborj AU - Jalal Hassanzadeh Asl AU - Babak Mohammadi TI - Optimal control strategy to control pandemic Covid-19 using MSILIHR_V Model JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022015/ DO - 10.1051/mmnp/2022015 LA - en ID - MMNP_2022_17_a2 ER -
%0 Journal Article %A Shahriar Seddighi Chaharborj %A Jalal Hassanzadeh Asl %A Babak Mohammadi %T Optimal control strategy to control pandemic Covid-19 using MSILIHR_V Model %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022015/ %R 10.1051/mmnp/2022015 %G en %F MMNP_2022_17_a2
Shahriar Seddighi Chaharborj; Jalal Hassanzadeh Asl; Babak Mohammadi. Optimal control strategy to control pandemic Covid-19 using MSILIHR_V Model. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 23. doi : 10.1051/mmnp/2022015. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022015/
[1] Mathematical perspective of Covid-19 pandemic: Disease extinction criteria in deterministic and stochastic models Chaos Solitons Fractals 2021 110381
, ,[2] Analysis of a Covid-19 model: optimal control, stability and simulations Alexandria Eng. J. 2021 647 658
[3] Optimal control of a fractional order model for the COVID-19 pandemic Chaos Solitons Fract. 2021 110678
,[4] A. Baleta, Dramatic drop in SA’s immunization rates. Spotlight, 24 June 2020.
[5] Toward a unified theory of sexual mixing and pair formation Math. Biosci. 1991 379 405
, , ,[6] S. Busenberg and C. Castillo-Chavez, Interaction pair formation and force of infection terms in sexually transmitted disease, in vol. 83 Mathematical and Statistical Approaches to AIDS Epidemiology, edited by Castillo-Chavez. Lecture Notes in Biomathematics. Springer-Verlag, New York (1989) 289–300.
[7] K. Causey, N. Fullman, R.J. Sorensen, N.C. Galles, P. Zheng, A. Aravkin and J.F. Mosser, Estimating global and regional disruptions to routine childhood vaccine coverage during the COVID-19 pandemic in 2020: a modelling study. The Lancet (2021).
[8] Impact of COVID-19 lockdown on routine immunisation in Karachi, Pakistan Lancet Global Health 2020 e1118 e1120
, , ,[9] S.S. Chaharborj, M. Rizam Abu Bakar and N. Akma Ibrahim, Deterministic and Stochastic Models for HIV. LAP Lambert Academic Publishing, Germany (2013).
[10] Disease transmission MSEIR model with individuals traveling between patches i and i + 1 J. Appl. Math. Inf. 2010 1073 1088
, ,[11] S.S. Chaharborj, M. Rizam Abu Bakar and N. Akma Ibrahim, Deterministic and Stochastic Models for HIV. LAP Lambert Academic Publishing, Germany (2013).
[12] Modelling transmission and control of the COVID-19 pandemic in Australia Nat. Commun. 2020 1 13
, , , ,[13] The use of generation stochastic models to study an epidemic disease Adv. Differ. Equ. 2013 1 9
, , , , ,[14] Disease transmission MSEIR model with individuals traveling between patches i and i + 1 J. Appl. Math. Inf. 2010 1073 1088
, ,[15] Dynamic interventions to control COVID-19 pandemic: a multivariate prediction modelling study comparing 16 worldwide countries Eur. J. Epidemiol. 2020 389 399
, , , , , ,[16] Modeling and optimal control analysis of transmission dynamics of COVID-19: The case of Ethiopia Alexandria Eng. J. 2021 719 732
,[17] Bifurcation thresholds in an SIR model with information-dependent vaccination Math. Model. Natur. Phenom. 2007 26 43
,[18] On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations J. Math. Biol. 1990 365 382
, ,[19] On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations J. Math. Biol. 1990 365 382
, ,[20] Modelling safe protocols for reopening schools during the COVID-19 pandemic in France Nat. Commun. 2021 1 10
, , , ,[21] Impact of lockdown on COVID-19 epidemic in Île-de-France and possible exit strategies BMC Med. 2020 240
, , , ,[22] The adjoint method for time-optimal control problems J. Comput. Nonlinear Dyn. 2021
, , , ,[23] Optimal control strategy of COVID-19 spread in morocco using SEIRD model Moroccan J. Pure Appl. Anal. 2021 66 79
, , ,[24] Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe Nature 2020 257 261
[25] Ranking the effectiveness of worldwide COVID-19 government interventions Nat. Hum. Behav. 2020 1303 1312
[26] The mathematics of infectious diseases SIAM Rev. 2000 599 653
[27] The effect of large-scale anti-contagion policies on the COVID-19 pandemic Nature 2020 262 267
[28] Optimal control model for attack of worms in wireless sensor network Int. J. Grid Distrib. Comput. 2014 251 272
,[29] The impact of the COVID-19 pandemic on immunization campaigns and programs: a systematic review Int. J. Environ. Res. Public Health 2021 988
, , , ,[30] How will climate change affect human health? Am. Sci. 1999 534 541
[31] The performance of routine immunization in selected African countries during the first six months of the COVID-19 pandemic Pan Afri. Med. J. 2020
, , , , , ,[32] Action needed now to prevent further increases in measles and measles deaths in the coming years The Lancet 2020 1782 1784
, , ,[33] Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control Chaos Solitons Fract. 2020 109826
, ,[34] National Health Commission (NHC) of the People’s Republic of China (2020). NHC daily reports. http://www.nhc.gov.cn/ yjb/pzhgli/new_list.shtml.
[35] Nonlinear, nondispersive wave equations: Lagrangian and Hamiltonian functions in the hodograph transformation Phys. Lett. A 2020 126064
,[36] An analysis of a nonlinear susceptible-exposed- infected-quarantine-recovered pandemic model of a novel coronavirus with delay effect Results Phys. 2020 103771
, , , ,[37] An analysis of a nonlinear susceptible-exposed- infected-quarantine-recovered pandemic model of a novel coronavirus with delay effect Results Phys. 2020 103771
, , , ,[38] M.A. Shereen, S. Khan, A. Kazmi, N. Bashir and R. Siddique, COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. (2020).
[39] Optimal control of the COVID-19 pandemic: controlled sanitary deconfinement in Portugal Sci. Rep. 2021 1 15
, , , , , ,[40] Modeling, state estimation, and optimal control for the US COVID-19 outbreak Sci. Rep. 2020 1 12
, , ,[41] Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission Math. Biosci. 2002 29 48
,[42] P.G. Walker, C. Whittaker, O. Watson et al., The global impact of COVID-19 and strategies for mitigation and suppression. London: WHO Collaborating Centre for Infectious Disease Modelling, MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London (2020).
[43] A novel coronavirus outbreak of global health concern Lancet 2020 470 473
, , ,[44] WHO, Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19) (WHO, 2020).
[45] WHO, Pulse survey on continuity of essential health services during the COVID-19 pandemic (2020).
[46] WHO, Statement following the twenty-eighth IHR emergency committee for polio. https://www.who.int/news/item/21-05-2021-statement-following-the-twenty-eighth-ihr-emergency-committee-for-polio.
[47] World Health Organization, Coronavirus disease (COVID-2019) situation reports (2020). https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. Accessed 15 April 2020.
[48] World Health Organization. Global immunization news (GIN) June 2020. Immunization and COVID-19. Second pulse Poll to help understand disruptions to vaccination and how to respond.
[49] The Worldometer (2020). COVID-19 CORONAVIRUS PANDEMIC. https://www.worldometers.info/coronavirus/. Accessed 15 April 2020.
Cité par Sources :