Voir la notice de l'article provenant de la source EDP Sciences
Bjørn C.S. Jensen 1 ; Allan P. Engsig-Karup 2 ; Kim Knudsen 2
@article{MMNP_2022_17_a3, author = {Bj{\o}rn C.S. Jensen and Allan P. Engsig-Karup and Kim Knudsen}, title = {Efficient {Uncertainty} {Quantification} and {Variance-Based} {Sensitivity} {Analysis} in {Epidemic} {Modelling} {Using} {Polynomial} {Chaos}}, journal = {Mathematical modelling of natural phenomena}, eid = {8}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022014}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022014/} }
TY - JOUR AU - Bjørn C.S. Jensen AU - Allan P. Engsig-Karup AU - Kim Knudsen TI - Efficient Uncertainty Quantification and Variance-Based Sensitivity Analysis in Epidemic Modelling Using Polynomial Chaos JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022014/ DO - 10.1051/mmnp/2022014 LA - en ID - MMNP_2022_17_a3 ER -
%0 Journal Article %A Bjørn C.S. Jensen %A Allan P. Engsig-Karup %A Kim Knudsen %T Efficient Uncertainty Quantification and Variance-Based Sensitivity Analysis in Epidemic Modelling Using Polynomial Chaos %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022014/ %R 10.1051/mmnp/2022014 %G en %F MMNP_2022_17_a3
Bjørn C.S. Jensen; Allan P. Engsig-Karup; Kim Knudsen. Efficient Uncertainty Quantification and Variance-Based Sensitivity Analysis in Epidemic Modelling Using Polynomial Chaos. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 8. doi : 10.1051/mmnp/2022014. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022014/
[1] Variance-based sensitivity analysis for time-dependent processes. Reliab. Eng. Syst. Saf. 2020 106722
, ,[2] S.N. Arifin, G.R. Madey and F.H. Collins, Spatial agent-based simulation modeling in public health: design, implementation, and applications for malaria epidemiology. John Wiley Sons (2016).
[3] D. Bigoni, Uncertainty Quantification with Applications to Engineering Problems Ph.D. thesis, Technical University of Denmark (2015).
[4] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods: fundamentals in single domains. Springer Science Business Media (2007).
[5] V. Capasso and V. Capasso, vol. 88 of Mathematical structures of epidemic systems. Springer (1993).
[6] The impact of uncertainty on predictions of the CovidSim epidemiological code. Nat. Comput. Sci. 2021 128 135
, , , , , , , , ,[7] The bootstrap and markov-chain monte carlo. J. Biopharmaceut. Stat. 2011 1052 1062
[8] “Herd Immunity": A Rough Guide. Clin. Infect. Dis. 2011 911 916
, ,[9] J. Friedman, T. Hastie, R. Tibshirani et al., The elements of statistical learning. Springer series in statistics New York (2001), Vol. 1.
[10] Polynomial chaos in stochastic finite elements. J. Appl. Mech. 1990 197 202
,[11] Delaying the peak of the COVID-19 epidemic with travel restrictions. Epidemiol. Methods 2021 20200042
, , ,[12] The Mathematics of Infectious Diseases. SIAM Rev. 2000 599 653
[13] Bayesian uncertainty quantification for transmissibility of influenza, norovirus and Ebola using information geometry. J. Royal Soc. Interface 2016 20160279
, , , , ,[14] A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action Int. J. Infectious Diseases 2020 211 216
, , , , , , , , ,[15] J.S. Liu and J.S. Liu, Vol. 10 of Monte Carlo strategies in scientific computing. Springer (2001).
[16] Superspreading and the effect of individual variation on disease emergence. Nature 2005 355 359
, , ,[17] T.E. Oliphant, vol. 1 of A guide to NumPy. Trelgol Publishing USA (2006).
[18] Uncertainty quantification of a mathematical model of COVID-19 transmission dynamics with mass vaccination strategy. Chaos Solitons Fractals 2021 110895
,[19] Impact of superspreaders on dissemination and mitigation of COVID-19 Proc. of the National Academy of Sciences 2021 e2016623118
,[20] Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 2008 964 979
[21] Uncertainty quantification in epidemiological models for the COVID-19 pandemic. Comput. Biol. Med. 2020 104011
, ,[22] E. Unlu, H. Léger, O. Motornyi, A. Rukubayihunga, T. Ishacian and M. Chouiten, Epidemic analysis of COVID-19 outbreak and counter-measures in France. medRxiv (2020) https://doi.org/10.1101/2020.04.27.20079962
[23] D. Xiu, Numerical methods for stochastic computations: a spectral method approach. Princeton University Press (2010).
[24] The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 2002 619 644
,Cité par Sources :