Efficient Uncertainty Quantification and Variance-Based Sensitivity Analysis in Epidemic Modelling Using Polynomial Chaos
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 8.

Voir la notice de l'article provenant de la source EDP Sciences

The use of epidemic modelling in connection with spread of diseases plays an important role in understanding dynamics and providing forecasts for informed analysis and decision-making. In this regard, it is crucial to quantify the effects of uncertainty in the modelling and in model-based predictions to trustfully communicate results and limitations. We propose to do efficient uncertainty quantification in compartmental epidemic models using the generalized Polynomial Chaos (gPC) framework. This framework uses a suitable polynomial basis that can be tailored to the underlying distribution for the parameter uncertainty to do forward propagation through efficient sampling via a mathematical model to quantify the effect on the output. By evaluating the model in a small number of selected points, gPC provides illuminating statistics and sensitivity analysis at a low computational cost. Through two particular case studies based on Danish data for the spread of Covid-19, we demonstrate the applicability of the technique. The test cases consider epidemic peak time estimation and the dynamics between superspreading and partial lockdown measures. The computational results show the efficiency and feasibility of the uncertainty quantification techniques based on gPC, and highlight the relevance of computational uncertainty quantification in epidemic modelling.
DOI : 10.1051/mmnp/2022014

Bjørn C.S. Jensen 1 ; Allan P. Engsig-Karup 2 ; Kim Knudsen 2

1 Department of Mathematics and Statistics, University of Helsinki, 00560 Helsinki, Finland
2 Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
@article{MMNP_2022_17_a3,
     author = {Bj{\o}rn C.S. Jensen and Allan P. Engsig-Karup and Kim Knudsen},
     title = {Efficient {Uncertainty} {Quantification} and {Variance-Based} {Sensitivity} {Analysis} in {Epidemic} {Modelling} {Using} {Polynomial} {Chaos}},
     journal = {Mathematical modelling of natural phenomena},
     eid = {8},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022014/}
}
TY  - JOUR
AU  - Bjørn C.S. Jensen
AU  - Allan P. Engsig-Karup
AU  - Kim Knudsen
TI  - Efficient Uncertainty Quantification and Variance-Based Sensitivity Analysis in Epidemic Modelling Using Polynomial Chaos
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022014/
DO  - 10.1051/mmnp/2022014
LA  - en
ID  - MMNP_2022_17_a3
ER  - 
%0 Journal Article
%A Bjørn C.S. Jensen
%A Allan P. Engsig-Karup
%A Kim Knudsen
%T Efficient Uncertainty Quantification and Variance-Based Sensitivity Analysis in Epidemic Modelling Using Polynomial Chaos
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022014/
%R 10.1051/mmnp/2022014
%G en
%F MMNP_2022_17_a3
Bjørn C.S. Jensen; Allan P. Engsig-Karup; Kim Knudsen. Efficient Uncertainty Quantification and Variance-Based Sensitivity Analysis in Epidemic Modelling Using Polynomial Chaos. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 8. doi : 10.1051/mmnp/2022014. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022014/

[1] A. Alexanderian, P.A. Gremaud, R.C. Smith Variance-based sensitivity analysis for time-dependent processes. Reliab. Eng. Syst. Saf. 2020 106722

[2] S.N. Arifin, G.R. Madey and F.H. Collins, Spatial agent-based simulation modeling in public health: design, implementation, and applications for malaria epidemiology. John Wiley Sons (2016).

[3] D. Bigoni, Uncertainty Quantification with Applications to Engineering Problems Ph.D. thesis, Technical University of Denmark (2015).

[4] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods: fundamentals in single domains. Springer Science Business Media (2007).

[5] V. Capasso and V. Capasso, vol. 88 of Mathematical structures of epidemic systems. Springer (1993).

[6] W. Edeling, H. Arabnejad, R. Sinclair, D. Suleimenova, K. Gopalakrishnan, B. Bosak, D. Groen, I. Mahmood, D. Crommelin, P.V. Coveney The impact of uncertainty on predictions of the CovidSim epidemiological code. Nat. Comput. Sci. 2021 128 135

[7] B. Efron The bootstrap and markov-chain monte carlo. J. Biopharmaceut. Stat. 2011 1052 1062

[8] P. Fine, K. Eames, D.L. Heymann “Herd Immunity": A Rough Guide. Clin. Infect. Dis. 2011 911 916

[9] J. Friedman, T. Hastie, R. Tibshirani et al., The elements of statistical learning. Springer series in statistics New York (2001), Vol. 1.

[10] R. Ghanem, P.D. Spanos Polynomial chaos in stochastic finite elements. J. Appl. Mech. 1990 197 202

[11] K. Græsbpll, L.E. Christiansen, U.H. Thygesen, C. Kirkeby Delaying the peak of the COVID-19 epidemic with travel restrictions. Epidemiol. Methods 2021 20200042

[12] H.W. Hethcote The Mathematics of Infectious Diseases. SIAM Rev. 2000 599 653

[13] T. House, A. Ford, S. Lan, S. Bilson, E. Buckingham-Jeffery, M. Girolami Bayesian uncertainty quantification for transmissibility of influenza, norovirus and Ebola using information geometry. J. Royal Soc. Interface 2016 20160279

[14] Q. Lin, S. Zhao, D. Gao, Y. Lou, S. Yang, S.S. Musa, M.H. Wang, Y. Cai, W. Wang, L. Yang A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action Int. J. Infectious Diseases 2020 211 216

[15] J.S. Liu and J.S. Liu, Vol. 10 of Monte Carlo strategies in scientific computing. Springer (2001).

[16] J.O. Lloyd-Smith, S.J. Schreiber, P.E. Kopp, W.M. Getz Superspreading and the effect of individual variation on disease emergence. Nature 2005 355 359

[17] T.E. Oliphant, vol. 1 of A guide to NumPy. Trelgol Publishing USA (2006).

[18] A. Olivares, E. Staffetti Uncertainty quantification of a mathematical model of COVID-19 transmission dynamics with mass vaccination strategy. Chaos Solitons Fractals 2021 110895

[19] K. Sneppen, L. Simonsen Impact of superspreaders on dissemination and mitigation of COVID-19 Proc. of the National Academy of Sciences 2021 e2016623118

[20] B. Sudret Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 2008 964 979

[21] L. Taghizadeh, A. Karimi, C. Heitzinger Uncertainty quantification in epidemiological models for the COVID-19 pandemic. Comput. Biol. Med. 2020 104011

[22] E. Unlu, H. Léger, O. Motornyi, A. Rukubayihunga, T. Ishacian and M. Chouiten, Epidemic analysis of COVID-19 outbreak and counter-measures in France. medRxiv (2020) https://doi.org/10.1101/2020.04.27.20079962

[23] D. Xiu, Numerical methods for stochastic computations: a spectral method approach. Princeton University Press (2010).

[24] D. Xiu, G.E. Karniadakis The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 2002 619 644

Cité par Sources :