Study of architectural forms of invasive carcinoma based on the measurement of pattern complexity
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 15.

Voir la notice de l'article provenant de la source EDP Sciences

Several years ago, a new paradigm of cancer perception emerged, considering a tumor not as a senseless heap of cells but as a self-organizing heterogeneous tissue of cancer cells that collectively fight for survival. It implies that the various architectural forms that a tumor takes during its growth are not occasional but are a synergistic response of a group of cancer cells in competition for the organism’s resources. In this work, we generate various patterns of a two-dimensional tumor using our previously developed individual-based model mimicking carcinoma features. Every cell is represented by a polygon dynamically changing its form and size. The dynamics of tissue are governed by the elastic potential energy. We numerically obtain various patterns of carcinoma and estimate empirical spatial entropy and complexity measures applying the approach based on the fast finite shearlet transform. We show how the complexity of growing carcinoma changes over time and depending on the values of the cell intercalation parameters. In each case, we give a rational explanation of why this form is beneficial to the tumor. Our results show that one can use complexity measurements for quantitative classification of tumors obtained in silico, which potentially could find its application in medical practice.
DOI : 10.1051/mmnp/2022013

Dmitry Bratsun 1 ; Ivan Krasnyakov 1

1 Department of Applied Physics, Perm National Research Polytechnic University, 614990 Perm, Russia
@article{MMNP_2022_17_a8,
     author = {Dmitry Bratsun and Ivan Krasnyakov},
     title = {Study of architectural forms of invasive carcinoma based on the measurement of pattern complexity},
     journal = {Mathematical modelling of natural phenomena},
     eid = {15},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022013/}
}
TY  - JOUR
AU  - Dmitry Bratsun
AU  - Ivan Krasnyakov
TI  - Study of architectural forms of invasive carcinoma based on the measurement of pattern complexity
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022013/
DO  - 10.1051/mmnp/2022013
LA  - en
ID  - MMNP_2022_17_a8
ER  - 
%0 Journal Article
%A Dmitry Bratsun
%A Ivan Krasnyakov
%T Study of architectural forms of invasive carcinoma based on the measurement of pattern complexity
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022013/
%R 10.1051/mmnp/2022013
%G en
%F MMNP_2022_17_a8
Dmitry Bratsun; Ivan Krasnyakov. Study of architectural forms of invasive carcinoma based on the measurement of pattern complexity. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 15. doi : 10.1051/mmnp/2022013. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022013/

[1] C. Bandt, B. Pompe Permutation entropy: a natural complexity measure for time series Phys. Rev. Lett. 2002 174102

[2] D.A. Bratsun, D.V. Merkuriev, A.P. Zakharov, L.M. Pismen Multiscale modeling of tumor growth induced by circadian rhythm disruption in epithelial tissue J. Biol. Phys. 2016 107 132

[3] D.A. Bratsun, I.V. Krasnyakov, L.M. Pismen Biomechanical modeling of invasive breast carcinoma under a dynamic change in cell phenotype: collective migration of large groups of cells Biomech. Model. Mechanobiol. 2020 723 743

[4] A. Brazhe Shearlet-based measures of entropy and complexity for two-dimensional patterns Phys. Rev. E. 2018 061301

[5] P. Brodatz, Textures: A Photographic Album for Artists and Designers. Dover Publications, New York (1966).

[6] D. Chavey Tilings by regular polygons - II: A catalog of tilings Comput. Math. Appl. 1989 147 165

[7] C.A. Chung, T.H. Lin, S.D. Chen, H.I. Huang Hybrid cellular automaton modeling of nutrient modulated cell growth in tissue engineering constructs J. Theor. Biol. 2010 267 278

[8] V. Cristini and J. Lowengrub, Multiscale Modeling of Cancer: an Integrated Experimental and Mathematical Modeling Approach. Cambridge University Press, Cambridge (2010).

[9] J.P. Crutchfield Between order and chaos Nat. Phys. 2012 17 24

[10] T.S. Deisboeck and G.S. Stamatakos, Multiscale Cancer Modeling. Chapman Hall/CRC, Boca Raton (2011)

[11] E.V. Denisov, N.V. Litviakov, M.V. Zavyalova, V.M. Perelmuter, S.V. Vtorushin, M.M. Tsyganov, T.S. Gerashchenko, E.Yu. Garbukov, E.M. Slonimskaya, N.V. Cherdyntseva Intratumoral morphological heterogeneity of breast cancer: neoadjuvant chemotherapy efficiency and multidrug resistance gene expression Sci. Rep. 2014 4709

[12] E. Denisov, T. Geraschenko, M. Zavyalova, N. Litviakov, M. Tsyganov, E. Kaigorodova, E. Slonimskaya, J. Kzhyshkowska, N. Cherdyntseva, V. Perelmuter Invasive and drug resistant expression profile of different morphological structures of breast tumors Neoplasma 2015 405 411

[13] D.L. Dexter, H.M. Kowalski, B.A. Blazar, Z. Fligiel, R. Vogel, G.H. Heppner Heterogeneity of tumor cells from a single mouse mammary tumor Cancer Res. 1978 3174 3181

[14] D. Drasdo, M. Loeffler Individual-based models to growth and folding in one-layered tissues: Intestinal crypts and early development Nonlinear Anal. 2001 245 256

[15] M. Egeblad, E.S. Nakasone, Z. Werb Tumors as organs: complex tissues that interface with the entire organism Dev. Cell 2010 884 901

[16] R. Farhadifar, J.C. Roper, B. Aigouy, S. Eaton, F. Jülicher The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing Curr. Biol. 2007 2095 2104

[17] P. Friedl, J. Locker, E. Sahai, J.E. Segall Classifying collective cancer cell invasion Nat. Cell Biol. 2012 777 783

[18] T.S. Gerashchenko, M.V. Zavyalova, E.V. Denisov, N.V. Krakhmal, D.N. Pautova, N.V. Litviakov, S.V. Vtorushin, N.V. Cher-Dyntseva, V.M. Perelmuter Intratumoral morphological heterogeneity of breast cancer as an indicator of the metastatic potential and tumor chemosensitivity Acta Nat. 2017 56 67

[19] C. Guillot, T. Lecuit Mechanics of epithelial tissue homeostasis and morphogenesis Science 2013 1185 1189

[20] K. Guo, D. Labate, W.-Q. Lim Edge analysis and identification using the continuous shearlet transform Appl. Comput. Harmon. Anal. 2009 24 46

[21] S. Hüauser, G. Steidl Convex multiclass segmentation with shearlet regularization Int. J. Comput. Math. 2013 62 81

[22] S. Hauser and G. Steidl, Fast finite shearlet transform: a tutorial. Available: http://arxiv.org/abs/1202.1773 (2014)

[23] L. He, L.R. Long, S. Antani, G.R. Thoma Histology image analysis for carcinoma detection and grading Comput. Methods Progr. Biomed. 2012 538 556

[24] G.H. Heppner Tumor heterogeneity Cancer Res. 1984 2259 2265

[25] H. Honda, T. Nagai, M. Tanemura Two different mechanisms of planar cell intercalation leading to tissue elongation Dev. Dyn. 2008 1826 1836

[26] L.J. Kleinsmith, Principles of cancer biology. Pearson Benjamin Cummings (2006).

[27] Y.L. Klimontovich Decrease in entropy in the process of self-organization. S-theorem Sov. Tech. Phys. Lett. 1983 606 610

[28] N.V. Krakhmal, M.V. Zavyalova, E.V. Denisov, S.V. Vtorushin, V.M. Perelmuter Cancer invasion: patterns and mechanisms Acta Nat. 2015 17 28

[29] I.V. Krasnyakov, D.A. Bratsun, L.M. Pismen Mathematical modelling of epithelial tissue growth Russ. J. Biomech. 2020 375 388

[30] G. Kutyniok and D. Labate, Shearlets. Multiscale analysis for multivariate data. Birkhüauser Boston, Boston (2012).

[31] S. Lamouille, J. Xu, R. Derynck Molecular mechanisms of epithelial-mesenchymal transition Nat. Rev. Mol. Cell Biol. 2014 178 196

[32] J. Lober, F. Ziebert and I.S. Aranson, Collisions of deformable cells lead to collective migration. Sci. Rep. (2015) 9172.

[33] R. Lopez-Ruiz, Y.L. Mancini, X. Calbet A statistical measure of complexity Phys. Lett. A. 1995 321 326

[34] J. Makki Diversity of breast carcinoma: histological subtypes and clinical relevance Clin. Med. Insights Pathol. 2015 23 31

[35] L.M. Merlo, J.W. Pepper, B.J. Reid, C.C. Maley Cancer as an evolutionary and ecological process Nat. Rev. Cancer 2006 924 935

[36] B.E. Miller, F.R. Miller, G.H. Heppner Interactions between tumor subpopulations affecting their sensitivity to the antineoplastic agents cyclophosphamide and methotrexate Cancer Res. 1981 4378 4381

[37] I. Mizeva, V. Dremin, E. Potapova, E. Zherebtsov, I. Kozlov, A. Dunaev Wavelet analysis of the temporal dynamics of the laser speckle contrast in human skin IEEE Trans. Biomed. Eng. 2020 1882 2889

[38] R. Polikar, A. Topalis, D. Green, J. Kounios, C.M. Clark Comparative multiresolution wavelet analysis of ERP spectral bands using an ensemble of classifiers approach for early diagnosis of Alzheimer's disease Comput. Biol. Med. 2007 542 558

[39] G.E. Powell, I.C. Percival A spectral entropy method for distinguishing regular and irregular motion of Hamiltonian systems J. Phys. A: Math. Gen. 1979 2053 2071

[40] I. Prigogine and G. Nicolis, Self-Organization in Non-Equilibrium Systems. Wiley (1977).

[41] H.V. Ribeiro, L. Zunino, E.K. Lenzi, P.A. Santoro, R.S. Mendes Complexity-entropy causality plane as a complexity measure for two-dimensional patterns PLoS ONE 2012 e40689

[42] O.A. Rosso, H.A. Larrondo, M.T. Martin, A. Plastino, M.A. Fuentes Distinguishing Noise from Chaos Phys. Rev. Lett. 2007 154102

[43] I. Ruben, R.-R. Reinaldo, V.-R. Fernando Tumor growth modelling by cellular automata Math. Mech. Complex Syst. 2017 239 259

[44] M. Salm, L.M. Pismen Chemical and mechanical signaling in epithelial spreading Phys. Biol. 2012 026009

[45] C.E. Shannon A mathematical theory of communication Bell Syst. Tech. J. 1948 379 423

[46] H.P. Sinn, H. Kreipe A brief overview of the WHO classification of breast tumors, 4th edition, focusing on issues and updates from the 3rd edition Breast Care 2013 149 154

[47] K-Y. Su, W-L. Lee Fourier transform infrared spectroscopy as a cancer screening and diagnostic tool: a review and prospects Cancers 2020 115

[48] D. Tabassum, K. Polyak Tumorigenesis: it takes a village Nat. Rev. Cancer 2015 473 483

[49] I. Viktorinova, L. Pismen, B. Aigouy, C. Dahmann Modeling planar polarity of epithelia: the role of signal relay in collective cell polarization J.R. Soc. Interface. 2011 1059 1063

[50] M. Zanin, L. Zunino, O.A. Rosso, D. Papo Permutation entropy and its main biomedical and econophysics applications: a review Entropy 2012 1553 1577

[51] L. Zunino, H.V. Ribeiro Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane Chaos Solitons Fract. 2016 679 688

Cité par Sources :