Mathematical modeling of Aphron drilling nanofluid driven by electroosmotically modulated peristalsis through a pipe
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 19.

Voir la notice de l'article provenant de la source EDP Sciences

This analysis is conducted for a theoretical examination of the fluid flow characteristics and heat transferred by the nanoparticle-enhanced drilling muds flowing through drilling pipes under various physical conditions. Here, an important type of drilling fluid called Aphron drilling fluid is under consideration which is very effective for drilling in depleted regions. The rheological characteristics of the drilling fluid are predicted by Herschel-Bulkley fluid model. The fluid flow is driven by peristaltic pumping which is further aided by electroosmosis. The zinc oxide nanoparticles are dispersed in the aphron drilling fluid to prepare the nanofluid. The administering set of equations is simplified under the lubrication approach and the closed-form solutions are obtained for velocity and pressure gradient force. However, numerical solutions are executed for the temperature of nanofluid through built-in routine bvp4c of MATLAB. Fluid flow characteristics are analyzed for variation in physical conditions through graphical results. The outcomes of this study reveal that velocity profile substantially rises for application of forwarding electric field and temperature profile significantly decays in this case. An increment in temperature difference raises the magnitude of the Nusselt number. Furthermore, the nanoparticle volume fraction contributes to fluid acceleration and thermal conductivity of the drilling fluid.
DOI : 10.1051/mmnp/2022012

Javaria Akram 1 ; Noreen Sher Akbar 2

1 School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
2 DBS&H, CEME, National University of Sciences and Technology, Islamabad, Pakistan
@article{MMNP_2022_17_a10,
     author = {Javaria Akram and Noreen Sher Akbar},
     title = {Mathematical modeling of {Aphron} drilling nanofluid driven by electroosmotically modulated peristalsis through a pipe},
     journal = {Mathematical modelling of natural phenomena},
     eid = {19},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022012/}
}
TY  - JOUR
AU  - Javaria Akram
AU  - Noreen Sher Akbar
TI  - Mathematical modeling of Aphron drilling nanofluid driven by electroosmotically modulated peristalsis through a pipe
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022012/
DO  - 10.1051/mmnp/2022012
LA  - en
ID  - MMNP_2022_17_a10
ER  - 
%0 Journal Article
%A Javaria Akram
%A Noreen Sher Akbar
%T Mathematical modeling of Aphron drilling nanofluid driven by electroosmotically modulated peristalsis through a pipe
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022012/
%R 10.1051/mmnp/2022012
%G en
%F MMNP_2022_17_a10
Javaria Akram; Noreen Sher Akbar. Mathematical modeling of Aphron drilling nanofluid driven by electroosmotically modulated peristalsis through a pipe. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 19. doi : 10.1051/mmnp/2022012. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022012/

[1] S. Agarwal, P. Tran, Y. Soong, D. Martello and R.K. Gupta, Flow Behavior of Nanoparticle Stabilized Drilling Fluids and Effect of High Temperature Aging, AADE National Technical Conference and Exhibition, Houston, USA, 12-14 April (2011) AADE-11-NCTE-3.

[2] S. Akhtar, L.B. Mccash, S. Nadeem, S. Saleem, A. Issakhov Mechanics of non-Newtonian blood flow in an artery having multiple stenosis and electroosmotic effects Sci. Prog. 2021 1 15

[3] J. Akram, N.S. Akbar Biological analysis of Carreau nanofluid in an endoscope with variable viscosity Phys. Scr. 2020 055201

[4] J. Akram, N.S. Akbar, D. Tripathi Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: a Sutterby fluid model Microvasc. Res. 2020 104062

[5] J. Akram, N.S. Akbar and D. Tripathi, Thermal analysis on MHD flow of ethylene glycol-based BNNTs nanofluids via peristaltically induced electroosmotic pumping in a curved microchannel. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-06173-7.

[6] J. Akram, N.S. Akbar and D. Tripathi, Electroosmosis augmented MHD peristaltic transport of SWCNTs suspension in aqueous media. J. Therm. Anal. Calorim. (2021).

[7] A. Aziz, M. Shams Entropy generation in MHD Maxwell-nanofluid flow with variable thermal conductivity, thermal radiation, slip conditions, and heat source AIP Adv. 2020 015038

[8] N. Bjorndalen, E. Kuru Stability of microbubble-based drilling fluids under downhole conditions J. Can. Pet. Technol. 2008 40 47

[9] T. Brookey Micro-Bubbles”: new Aphron drill-in fluid technique reduces formation damage in horizontal wells Surgery 1998 89 93

[10] S. Chakraborty Augmentation of peristaltic microflows through electro-osmotic mechanisms J. Phys. D: Appl. Phys. 2006 5356 5363

[11] S.U. Choi Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows J. Heat Transfer 1995 99 105

[12] K. Ehsan, T. Shahin, A. Ali Rheological properties of Aphron based drilling fluids Petrol. Explor. Develop. 2016 1076 1081

[13] P. Goswami, J. Chakraborty, A. Bandopadhyay, S. Chakraborty Electrokinetically modulated peristaltic transport of power-law fluids Microvasc. Res. 2016 41 54

[14] F.B. Growcock, A. Belkin, M. Fosdick, M. Irving, B. O’Connor, T. Brookey Recent advances in aphron drilling fluid technology SPE Drill. & Compl. 2007 74 80

[15] H. Helmholtz Ueber einige Gesetze der Vertheilung elektrischer Strome in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche Ann. Phys. 1853 211 233

[16] S. Nadeem, W. Fuzhang, F.M. Alharbi, F. Sajid, N. Abbas, A.S. El-Shafay, F.S. Al-Mubaddel Numerical computations for Buongiorno nanofluid model on the boundary layer flow of viscoelastic fluid towards a nonlinear stretching sheet Alex. Eng. J. 2022 1769 1778

[17] S. Nadeem, M.N. Kiani, A. Saleem, A. Issakhov Microvascular blood flow with heat transfer in a wavy channel having electroosmotic effects Electrophoresis 2020 1198 1205

[18] M.K. Nayak, R. Mehmood, O.D. Makinde, O. Mahian, A.J. Chamkha Magnetohydrodynamic flow, and heat transfer impact on ZnO-SAE50 nanolubricant flow over an inclined rotating disk J. Cent. South Univ. 2019 1146 1160

[19] A.M. Paiaman, B.D. Al-Anazi Feasibility of decreasing pipe sticking probability using nanoparticles NAFTA 2009 645 647

[20] S. Ponmani, R. Nagarajan, J.S. Sangwai Effect of nanofluids of CuO and ZnO in polyethylene glycol and polyvinylpyrrolidone on the thermal, electrical, and filtration-loss properties of water-based drilling fluids SPE J. 2016 405 415

[21] C. Rajashekhar, F. Mebarek-Oudina, I.E. Sarris, H. Vaidya, K.V. Prasad, G. Manjunatha, H. Balachandra Impact of electroosmosis and wall properties in modelling peristaltic mechanism of a Jeffrey liquid through a microchannel with variable fluid properties Inventions 2021 73

[22] K. Ramesh, D. Tripathi, M.M. Bhatti, C.M. Khalique Electro-osmotic flow of hydromagnetic dusty viscoelastic fluids in a microchannel propagated by peristalsis J. Mol. Liq. 2020 113568

[23] A. Ramos, H. Morgan, N.G. Green, A. González, A. Castellanos Pumping of liquids with traveling-wave electroosmosis J. Appl. Phys. 2005 084906

[24] M.M. Rashidi, M. Ali, N. Freidoonimehr, B. Rostami, M.A. Hossain Mixed convective heat transfer for MHD viscoelastic fluid flow over a porous wedge with thermal radiation Adv. Mech. Eng. 2014 735939

[25] A.B. Rea, E.C. Alvis, B.P. Paiuk, J.M. Climaco, M. Vallejo, E. Leon and J. Inojosa, Application of Aphron technology in drilling depleted mature fields. SPE Lat. Am. Caribb. Pet. Eng. (2003) SPE-81082-MS.

[26] C.L. Rice, R. Whitehead Electrokinetic flow in a narrow cylindrical capillary J. Phys. Chem. 1965 4017 4024

[27] S. Saleem, S. Akhtar, S. Nadeem, A. Saleem, M. Ghalambaz, A. Issakhov Mathematical study of electroosmotically driven peristaltic flow of Casson fluid inside a tube having systematically contracting and relaxing sinusoidal heated walls Chin. J. Phys. 2021 300 311

[28] F. Sebba, Foams and Biliquid Foams-Aphron. John Wiley and Sons, New York (1987) 46–61, 62–7R, 102–127.

[29] T.M. Squires, M.Z. Bazant Induced-charge electro-osmosis J. Fluid Mech. 2003 509

[30] B.A. Suleimanov, F.S. Ismailov, E.F. Veliyev Nanofluid for enhanced oil recovery J. Pet. Sci. Eng. 2011 431 437

[31] D. Tripathi, V.K. Narla, Y. Aboelkassem Electrokinetic membrane pumping flow model in a microchannel Phys. Fluids 2020 082004

[32] H. Vaidya, C. Rajashekhar, G. Manjunatha, A. Wakif, K.V. Prasad, L. Animasaun, K. Shivaraya Analysis of entropy generation and biomechanical investigation of MHD Jeffery fluid through a vertical non-uniform channel Case Stud. Therm. Eng. 2021 101538

[33] H. Vaidya, M. Gudekote, R. Choudhari, K.V. Prasad Role of slip and heat transfer on peristaltic transport of Herschel-Bulkley fluid through an elastic tube Multidiscip. Model. Mater. Struct. 2018 940 959

[34] X. Xuan, B. Xu, D. Sinton, D. Li Electroosmotic flow with Joule heating effects Lab Chip 2004 230 236

[35] H. Zhu, C. Zhang, Y. Tang, J. Wang, B. Ren, Y. Yin Preparation and thermal conductivity of suspensions of graphite nanoparticles Carbon 2007 203 228

[36] A.M. Zidan, L.B. Mccash, S. Akhtar, A. Saleem, A. Issakhov, S. Nadeem Entropy generation for the blood flow in an artery with multiple stenoses having a catheter Alex. Eng. J. 2021 5741 5748

Cité par Sources :