Voir la notice de l'article provenant de la source EDP Sciences
Yu Zhang 1 ; Shuai Fan 1 ; Yanyan Zhang 2
@article{MMNP_2022_17_a24, author = {Yu Zhang and Shuai Fan and Yanyan Zhang}, title = {Concentration and {Cavitation} in the {Vanishing} {Pressure} {Limit} of {Solutions} to a 3 {\texttimes} 3 {Generalized} {Chaplygin} {Gas} {Equations}}, journal = {Mathematical modelling of natural phenomena}, eid = {10}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022009}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022009/} }
TY - JOUR AU - Yu Zhang AU - Shuai Fan AU - Yanyan Zhang TI - Concentration and Cavitation in the Vanishing Pressure Limit of Solutions to a 3 × 3 Generalized Chaplygin Gas Equations JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022009/ DO - 10.1051/mmnp/2022009 LA - en ID - MMNP_2022_17_a24 ER -
%0 Journal Article %A Yu Zhang %A Shuai Fan %A Yanyan Zhang %T Concentration and Cavitation in the Vanishing Pressure Limit of Solutions to a 3 × 3 Generalized Chaplygin Gas Equations %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022009/ %R 10.1051/mmnp/2022009 %G en %F MMNP_2022_17_a24
Yu Zhang; Shuai Fan; Yanyan Zhang. Concentration and Cavitation in the Vanishing Pressure Limit of Solutions to a 3 × 3 Generalized Chaplygin Gas Equations. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 10. doi : 10.1051/mmnp/2022009. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022009/
[1] Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 2002 043507
, ,[2] Generalized Chaplygin gas and cosmic microwave background radiation constraints. Phys. Rev. D 2003 063003
, ,[3] Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 1998 2317 2328
,[4] T. Chang, G. Chen and S. Yang, 2-D Riemann problem in gas dynamics and formation of spiral, in: Nonlinear Problems in Engineering and Science—Numerical and Analytical Approach (Beijing, 1991), Science Press, Beijing (1992), pp. 167–179.
[5] On the Riemann problem for two-dimensional Euler equations. I. Interaction of shocks and rarefaction waves. Discrete Contin. Dyn. Syst. 1995 555 584
, ,[6] On the Riemann problem for two-dimensional Euler equations. II. Interaction of contact discontinuities. Discrete Contin. Dyn. Syst. 2000 419 430
, ,[7] On gas jets. Sci. Mem. Moscow Univ. Math. Phys. 1904 1 121
[8] Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM J. Math. Anal. 2003 925 938
,[9] Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids. Physica D 2004 141 165
,[10] C.M. Dafermos, Hyperbolic Conversation Laws in Continuum Physics. Grundlehren der mathematischen Wissenchaften, Springer, Berlin-Heidelberg-New York (2010).
[11] The vanishing pressure limit of Riemann solutions to the non-isentropic Euler equations for generalized Chaplygin gas. Adv. Math. Phys. 2019 1 12
,[12] The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system. Commun. Pure Appl. Anal. 2010 431 458
, ,[13] One-dimensional Riemann problem for equations of constant pressure fluid dynamics with measure solutions by viscosity method. Acta Appl. Math. 1999 209 229
[14] Non-oscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 1998 1892 1917
,[15] Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas. Commun. Pure Appl. Anal. 2016 2373 2400
,[16] Note on the compressible Euler equations with zero temperature. Appl. Math. Lett. 2001 519 523
[17] The limit Riemann solutions to nonisentropic Chaplygin Euler equations. Open Math. 2020 1771 1787
,[18] The Aw-Rascle traffic model with Chaplygin pressure. J. Math. Anal. Appl. 2013 379 387
,[19] Delta shock wave with Dirac delta function in multiple components for the system of generalized Chaplygin gas dynamics. Boundary Value Probl. 2016 202
[20] Delta shock wave in the compressible Euler equations for a Chaplygin gas. J. Math. Anal. Appl. 2017 245 261
[21] Interacting holographic generalized Chaplygin gas model. Phys. Lett. B 2007 1 6
[22] The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium Rev. Modern Phys. 1989 185 220
,[23] Exact Riemann solutions for the drift-flux equations of two-phase flow under gravity. J. Differ. Equ. 2022 1 55
,[24] Delta wave and vacuum state for generalized Chaplygin gas dynamics system as pressure vanishes. Nonlinear Anal. 2015 115 128
, ,[25] On the delta shock wave interactions for the isentropic Chaplygin gas system consisting of three scalar equations. Filomat 2019 5355 5373
,[26] Two dimensional subsonic flow of compressible fluids. J. Aeron. Sci. 1939 399 407
[27] Compressibility effects in aerodynamics. J. Aeron. Sci. 1941 337 365
[28] The Riemann problem for one dimensional generalized Chaplygin gas dynamics. J. Math. Anal. Appl. 2013 434 450
[29] Vanishing pressure limits of Riemann solutions to the isentropic relativistic Euler system for Chaplygin gas. J. Math. Anal. Appl. 2014 506 521
,[30] Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Commun. Math. Phys. 1996 349 380
, ,[31] The vanishing pressure limit of solutions to the simplified Euler equations for isentropic fluids. Ann. Appl. Math. 2012 115 126
[32] Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems. SIAM J. Math. Anal. 1990 593 630
,[33] Concentration and cavitation in the vanishing pressure limit of solutions to the generalized Chaplygin Euler equations of compressible fluid flow. Eur. J. Mech. B-Fluids 2019 252 262
, ,[34] Interactions of delta shock waves for the equations of constant pressure fluid dynamics. Differ. Equ. Appl. 2021 63 84
,Cité par Sources :