Concentration and Cavitation in the Vanishing Pressure Limit of Solutions to a 3 × 3 Generalized Chaplygin Gas Equations
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 10.

Voir la notice de l'article provenant de la source EDP Sciences

The phenomena of concentration and cavitation are identified and analyzed by studying the vanishing pressure limit of solutions to the 3x3 isentropic compressible Euler equations for generalized Chaplygin gas (GCG) with a small parameter. It is rigorously proved that, any Riemann solution containing two shocks and possibly one-contact-discontinuity of the GCG equations converges to a delta-shock solution of the same system as the parameter decreases to a certain critical value. Moreover, as the parameter goes to zero, that is, the pressure vanishes, the limiting solution is just the delta-shock solution of the pressureless gas dynamics (PGD) model, and the intermediate density between the two shocks tends to a weighted δ-measure that forms the delta shock wave; any Riemann solution containing two rarefaction waves and possibly one contact-discontinuity tends to a two-contact-discontinuity solution of the PGD model, and the nonvacuum intermediate state in between tends to a vacuum state. Finally, some numerical results are presented to exhibit the processes of concentration and cavitation as the pressure decreases.
DOI : 10.1051/mmnp/2022009

Yu Zhang 1 ; Shuai Fan 1 ; Yanyan Zhang 2

1 Department of Mathematics, Yunnan Normal University, Kunming 650500, PR China
2 College of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, PR China
@article{MMNP_2022_17_a24,
     author = {Yu Zhang and Shuai Fan and Yanyan Zhang},
     title = {Concentration and {Cavitation} in the {Vanishing} {Pressure} {Limit} of {Solutions} to a 3 {\texttimes} 3 {Generalized} {Chaplygin} {Gas} {Equations}},
     journal = {Mathematical modelling of natural phenomena},
     eid = {10},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022009/}
}
TY  - JOUR
AU  - Yu Zhang
AU  - Shuai Fan
AU  - Yanyan Zhang
TI  - Concentration and Cavitation in the Vanishing Pressure Limit of Solutions to a 3 × 3 Generalized Chaplygin Gas Equations
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022009/
DO  - 10.1051/mmnp/2022009
LA  - en
ID  - MMNP_2022_17_a24
ER  - 
%0 Journal Article
%A Yu Zhang
%A Shuai Fan
%A Yanyan Zhang
%T Concentration and Cavitation in the Vanishing Pressure Limit of Solutions to a 3 × 3 Generalized Chaplygin Gas Equations
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022009/
%R 10.1051/mmnp/2022009
%G en
%F MMNP_2022_17_a24
Yu Zhang; Shuai Fan; Yanyan Zhang. Concentration and Cavitation in the Vanishing Pressure Limit of Solutions to a 3 × 3 Generalized Chaplygin Gas Equations. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 10. doi : 10.1051/mmnp/2022009. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022009/

[1] M.C. Bento, O. Bertolami, A.A. Sen Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 2002 043507

[2] M.C. Bento, O. Bertolami, A.A. Sen Generalized Chaplygin gas and cosmic microwave background radiation constraints. Phys. Rev. D 2003 063003

[3] Y. Brenier, E. Grenier Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 1998 2317 2328

[4] T. Chang, G. Chen and S. Yang, 2-D Riemann problem in gas dynamics and formation of spiral, in: Nonlinear Problems in Engineering and Science—Numerical and Analytical Approach (Beijing, 1991), Science Press, Beijing (1992), pp. 167–179.

[5] T. Chang, G. Chen, S. Yang On the Riemann problem for two-dimensional Euler equations. I. Interaction of shocks and rarefaction waves. Discrete Contin. Dyn. Syst. 1995 555 584

[6] T. Chang, G. Chen, S. Yang On the Riemann problem for two-dimensional Euler equations. II. Interaction of contact discontinuities. Discrete Contin. Dyn. Syst. 2000 419 430

[7] S. Chaplygin On gas jets. Sci. Mem. Moscow Univ. Math. Phys. 1904 1 121

[8] G. Chen, H. Liu Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM J. Math. Anal. 2003 925 938

[9] G. Chen, H. Liu Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids. Physica D 2004 141 165

[10] C.M. Dafermos, Hyperbolic Conversation Laws in Continuum Physics. Grundlehren der mathematischen Wissenchaften, Springer, Berlin-Heidelberg-New York (2010).

[11] Q. Ding, L. Guo The vanishing pressure limit of Riemann solutions to the non-isentropic Euler equations for generalized Chaplygin gas. Adv. Math. Phys. 2019 1 12

[12] L. Guo, W. Sheng, T. Zhang The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system. Commun. Pure Appl. Anal. 2010 431 458

[13] J. Hu One-dimensional Riemann problem for equations of constant pressure fluid dynamics with measure solutions by viscosity method. Acta Appl. Math. 1999 209 229

[14] G. Jiang, E. Tadmor Non-oscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 1998 1892 1917

[15] H. Li, Z. Shao Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas. Commun. Pure Appl. Anal. 2016 2373 2400

[16] J. Li Note on the compressible Euler equations with zero temperature. Appl. Math. Lett. 2001 519 523

[17] M. Lin, L. Guo The limit Riemann solutions to nonisentropic Chaplygin Euler equations. Open Math. 2020 1771 1787

[18] L. Pan, X. Han The Aw-Rascle traffic model with Chaplygin pressure. J. Math. Anal. Appl. 2013 379 387

[19] Y. Pang Delta shock wave with Dirac delta function in multiple components for the system of generalized Chaplygin gas dynamics. Boundary Value Probl. 2016 202

[20] Y. Pang Delta shock wave in the compressible Euler equations for a Chaplygin gas. J. Math. Anal. Appl. 2017 245 261

[21] M.R. Setare Interacting holographic generalized Chaplygin gas model. Phys. Lett. B 2007 1 6

[22] S.F. Shandarin, Ya.B. Zeldovich The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium Rev. Modern Phys. 1989 185 220

[23] C. Shen, M. Sun Exact Riemann solutions for the drift-flux equations of two-phase flow under gravity. J. Differ. Equ. 2022 1 55

[24] W. Sheng, G. Wang, G. Yin Delta wave and vacuum state for generalized Chaplygin gas dynamics system as pressure vanishes. Nonlinear Anal. 2015 115 128

[25] M. Sun, J. Xin On the delta shock wave interactions for the isentropic Chaplygin gas system consisting of three scalar equations. Filomat 2019 5355 5373

[26] H. Tsien Two dimensional subsonic flow of compressible fluids. J. Aeron. Sci. 1939 399 407

[27] T. Von Karman Compressibility effects in aerodynamics. J. Aeron. Sci. 1941 337 365

[28] G. Wang The Riemann problem for one dimensional generalized Chaplygin gas dynamics. J. Math. Anal. Appl. 2013 434 450

[29] G. Yin, K. Song Vanishing pressure limits of Riemann solutions to the isentropic relativistic Euler system for Chaplygin gas. J. Math. Anal. Appl. 2014 506 521

[30] W.E. Yu, G. Rykov, Ya.G. Sinai Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Commun. Math. Phys. 1996 349 380

[31] Q. Zhang The vanishing pressure limit of solutions to the simplified Euler equations for isentropic fluids. Ann. Appl. Math. 2012 115 126

[32] T. Zhang, Y. Zheng Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems. SIAM J. Math. Anal. 1990 593 630

[33] Y. Zhang, Y. Pang, J. Wang Concentration and cavitation in the vanishing pressure limit of solutions to the generalized Chaplygin Euler equations of compressible fluid flow. Eur. J. Mech. B-Fluids 2019 252 262

[34] Y. Zhang, Y. Zhang Interactions of delta shock waves for the equations of constant pressure fluid dynamics. Differ. Equ. Appl. 2021 63 84

Cité par Sources :