Voir la notice de l'article provenant de la source EDP Sciences
Kalyan Manna 1 ; Malay Banerjee 1
@article{MMNP_2022_17_a23, author = {Kalyan Manna and Malay Banerjee}, title = {Spatiotemporal pattern formation in a prey{\textendash}predator model with generalist predator}, journal = {Mathematical modelling of natural phenomena}, eid = {6}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022007}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022007/} }
TY - JOUR AU - Kalyan Manna AU - Malay Banerjee TI - Spatiotemporal pattern formation in a prey–predator model with generalist predator JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022007/ DO - 10.1051/mmnp/2022007 LA - en ID - MMNP_2022_17_a23 ER -
%0 Journal Article %A Kalyan Manna %A Malay Banerjee %T Spatiotemporal pattern formation in a prey–predator model with generalist predator %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022007/ %R 10.1051/mmnp/2022007 %G en %F MMNP_2022_17_a23
Kalyan Manna; Malay Banerjee. Spatiotemporal pattern formation in a prey–predator model with generalist predator. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 6. doi : 10.1051/mmnp/2022007. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022007/
[1] Nonlinear effects on Turing patterns: time oscillations and chaos Phys. Rev. E 2012 026201
, , , ,[2] Turing patterns in a diffusive Holling-Tanner predator-prey model with an alternative food source for the predator Commun. Nonlinear Sci. Numer. Simul 2021 105802
, , , ,[3] Biological control with nonlocal interactions Math. Biosci 2018 129 146
, ,[4] Self-organized spatial patterns and chaos in a ratio-dependent predator-prey system Theor. Ecol 2011 37 53
,[5] Prey-predator model with a nonlocal consumption of prey Chaos 2016 083120
,[6] Spatio-temporal pattern formation in Rosenzweig-MacArthur model: Effect of nonlocal interactions Ecol. Complex 2017 2 10
,[7] Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations J. Theor. Biol 2007 220 229
, ,[8] Cooperative self-organization of microorganisms Adv. Phys 2000 395 554
, ,[9] Turning back from the brink: detecting an impeding regime shift in time to avert it Proc. Natl. Acad. Sci. USA 2009 826 831
, ,[10] Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth Comput. Math. Appl 2015 1948 69
, , , , ,[11] Aggregation and the competitive exclusion principle J. Theor. Biol 1989 57 66
[12] Models for predator-prey systems at multiple scales SIAM Rev 1996 256 286
,[13] The influence of generalist predators in spatially extended predator-prey systems Ecol. Complex 2015 50 60
[14] Analytical studies of fronts, colonies, and patterns: combination of the Allee effect and nonlocal competition interactions Phys. Rev. E 2010 036210
, ,[15] Macrolophus caliginosus: Functional response to whiteflies and preference and switching capacity between whiteflies and spider mites Entomolog. Exper. Appl 2001 81 88
, ,[16] Bistability and limit cycles in generalist predator-prey dynamics Ecol. Complex 2013 48 55
, ,[17] G.F. Gause, The Struggle for Existence. Williams and Wilkins, Baltimore, Maryland (1934).
[18] Pattern formation in a diffusive intraguild predation model with nonlocal interaction effects AIP Adv 2019 035046
, ,[19] Experimental studies on predation: dispersion factors and predator-prey oscillations Hilgardia 1958 343 383
[20] A nonlinear stability analysis of vegetative Turing pattern formation for an interaction-diffusion plant-surface water model system in an arid flat environment Bull. Math. Biol 2012 803 833
,[21] Regular and irregular patterns in semiarid vegetation Science 1999 1826 1828
[22] M. Kot, Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001).
[23] Pattern formation in spatially extended tritrophic food chain model systems: Generalist versus specialist top predators ISRN Biomath 2013 198185
[24] Hypothesis for origin of planktonic patchiness Nature 1976 659
,[25] Pattern dynamics in a spatial predator-prey model with nonmonotonic response function Int. J. Bifurc. Chaos 2018 1850077
, ,[26] Coexistence in laboratory populations of Paramecium aurelia and its predator Didinum nasutum Ecology 1973 1320 1327
[27] The effects of space and enrichment on a predator-prey system Ecology 1974 1142 1147
[28] Pattern formation for a two-dimensional reaction-diffusion model with chemotaxis J. Math. Anal. Appl 2019 1883 1909
, ,[29] Control of invasive hosts by generalist parasitoids Math. Med. Biol 2008 1 20
, ,[30] Stationary, non-stationary and invasive patterns for a prey-predator system with additive Allee effect in prey growth Ecol. Complex 2018 206 217
,[31] Analytical and numerical detection of traveling wave and wave-train solutions in a prey-predator model with weak Allee effect Nonlinear Dyn 2020 2989 3006
, ,[32] Dynamics of a diffusive two-prey-one-predator model with nonlocal intra-specific competition for both the prey species Mathematics 2020 101
, ,[33] Pattern formation in a three-species cyclic competition model Bull. Math. Biol 2021 52
, ,[34] Spatiotemporal complexity of plankton and fish dynamics SIAM Rev 2002 311 370
, , , ,[35] Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition Theor. Popul. Biol 2011 289 297
,[36] Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect J. Theor. Biol 2006 18 35
, ,[37] Switching in general predators: Experiments on predator specificity and stability of prey populations Ecol. Monogr 1969 335 354
[38] J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, Berlin, Germany (2003).
[39] A non-linear analysis for spatial structure in a reaction-diffusion model Bull. Math. Biol 1983 917 930
,[40] Effects of boundary conditions on pattern formation in a nonlocal prey-predator model Appl. Math. Model 2020 809 823
, ,[41] Effect of kernels on spatio-temporal patterns of a non-local prey-predator model Math. Biosci 2019 96 107
, ,[42] Allee effect makes possible patchy invasion in a predator-prey system Ecol. Lett 2002 345 352
, ,[43] The complex dynamics of a diffusive prey-predator model with an Allee effect in prey Ecol. Complex 2016 123 44
,[44] Self-organized patchiness and catastrophic shifts in ecosystems Science 2004 1926 1929
, , ,[45] Pattern formation and bistability in a generalist predator-prey model Mathematics 2020 20
, ,[46] Catastrophic shifts in ecosystems Nature 2001 591 596
, , ,[47] Pattern formation in a model of competing populations with nonlocal interactions Physica D 2013 12 22
, ,[48] Dissipative structure: an explanation and an ecological example J. Theor. Biol 1972 545 559
,[49] N. Shigesada and K. Kawasaki, Biological invasions: theory and practice. Oxford University Press, Oxford (1997).
[50] A simple predator-prey model of exploited marine fish populations incorporating alternative prey ICES J. Mar. Sci 1995 615 628
,[51] Mathematical approach to nonlocal interactions using a reaction-diffusion system Dev. Growth Differ 2017 388 95
, ,[52] The chemical basis of morphogenesis Philos. Trans. R. Soc. Lond. B 1952 37 72
[53] Out-of-phase oscillatory Turing patterns in a bistable reaction-diffusion system Phys. Rev. E 2005 066212
,[54] Alternative food, switching predators, and the persistence of predator-prey systems Am. Natural 2001 512 524
, , ,[55] How population dynamics shape the functional response in a one-predator-two-prey system Ecology 2007 1571 81
, ,[56] Functional responses of three neotropical mirid predators to eggs of Tuta absoluta on tomato Insects 2016 34
, , ,Cité par Sources :