Voir la notice de l'article provenant de la source EDP Sciences
Grigory Panasenko 1 ; Konstantin Pileckas 2 ; Bogdan Vernescu 3
@article{MMNP_2022_17_a28, author = {Grigory Panasenko and Konstantin Pileckas and Bogdan Vernescu}, title = {Steady state {non-Newtonian} flow with strain rate dependent viscosity in thin tube structure with no slip boundary condition}, journal = {Mathematical modelling of natural phenomena}, eid = {18}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022005}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022005/} }
TY - JOUR AU - Grigory Panasenko AU - Konstantin Pileckas AU - Bogdan Vernescu TI - Steady state non-Newtonian flow with strain rate dependent viscosity in thin tube structure with no slip boundary condition JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022005/ DO - 10.1051/mmnp/2022005 LA - en ID - MMNP_2022_17_a28 ER -
%0 Journal Article %A Grigory Panasenko %A Konstantin Pileckas %A Bogdan Vernescu %T Steady state non-Newtonian flow with strain rate dependent viscosity in thin tube structure with no slip boundary condition %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022005/ %R 10.1051/mmnp/2022005 %G en %F MMNP_2022_17_a28
Grigory Panasenko; Konstantin Pileckas; Bogdan Vernescu. Steady state non-Newtonian flow with strain rate dependent viscosity in thin tube structure with no slip boundary condition. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 18. doi : 10.1051/mmnp/2022005. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022005/
[1] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).
[2] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I Commun. Pure Appl. Math. 1959 623 727
[3] Solutions of some problems of vector analysis related to operators div and grad Proc. Semin. S.L. Sobolev 1980 5 40
[4] Asymptotic analysis of a Bingham fluid in a thin T-like shaped structure J. Math Pures Appl. 2019 148 166
[5] One dimensional models for blood flow in arteries J. Eng. Math. 2003 251 276
[6] P. Galdi, R. Rannacher, A.M. Robertson and S. Turek, Hemodynamical Flows, Modeling, Analysis and Simulation. Oberwolfach Seminars, V.37, Birkhauser, Basel, Boston, Berlin (2008).
[7] P. Galdi, An Introduction to the Mathematical Theory of Navier-Stokes Equations. Springer (1994).
[8] Certain problems of vector analysis, Zapiski Nauchn. Sem. LOMI, 1984, 138, 65-85 Engl. transl Sov. Math. 1986 469 483
[9] Non-stationary Poiseuille-type solutions for the second-grade fluid flow Lithuanian Math. J. 2012 155 171
[10] The second grade fluid flow problem in an infinite pipe Asymptotic Anal. 2013 237 262
[11] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluid. Gordon and Breach (1969).
[12] On some problems of vector analysis and generalized formulations of boundary value problems for the Navier-Stokes equations Zapiski Nauchn. Sem. LOMI 59 (1976) 81-116. English Transl.: J. Sov. Math. 1978 257 285
[13] O.A. Ladyzhenskaya and N.N. Ural'ceva, Linear and Quasi-Linear Elliptic Equations. Academic Press, New York (1968).
[14] E.M. Landis, Second Order Elliptic and Parabolic Equations. Nauka, Moscow (1971).
[15] Steady flow of a non-Newtonian fluid in unbounded channels and pipes Math. Models Methods Appl. Sci. 2000 1425 1445
[16] A note on Kirchhoff junction rule for power-law fluids Zeitschrift für Naturforschung A 2015 695 702
[17] Asymptotic partial domain decomposition in thin tube structures: numerical experiments Int. J. Multiscale Comput. Eng. 2013 407 441
[18] S.A. Nazarov and B.A. Plamenevskiy, Elliptic Problems in Domains with Piecewise Smooth Boundary. Nauka, Moscow (1991).
[19] On the asymptotic behaviour at infinity of solutions in linear elasticity Arch. Rat. Mech. Anal. 1982 29 53
[20] Asymptotic expansion of the solution of Navier-Stokes equation in a tube structure C.R. Acad. Sci. Paris 1998 867 872
[21] G. Panasenko, Multi-scale Modeling for Structures and Composites. Springer, Dordrecht (2005).
[22] Divergence equation in thin-tube structure Applicable Anal. 2015 1450 1459
[23] Flows in a tube structure: equation on the graph J. Math. Phys. 2014 081505
[24] Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. I. The case without boundary layer-in-time Nonlinear Anal. Series A, Theory Methods Appl. 2015 125 168
[25] Steady state non-Newtonian flow in thin tube structure: equation on the graph Algebra Anal. 2021 197 214
[26] Steady state non-Newtonian flow with strain rate dependent viscosity in domains with cylindrical outlets to infinity Nonlinear Anal.: Modeling Controle 2021 1166 1199
[27] Non-Newtonian flows in domains with non-compact boundaries Nonlinear Anal. A 2019 214 229
[28] Navier-Stokes system in domains with cylindrical outlets to infinity. Leray's problem Handbook of Mathematical Fluid Dynamics 2007 445 647
[29] Weighted Lq -solvability of the steady Stokes system in domains with incompact boundaries Math. Models Methods Appl. Sci. 1996 97 136
[30] On the non-stationary linearized Navier-Stokes problem in domains with cylindrical outlets to infinity Math. Ann. 2005 395 419
[31] Steady flows of viscoelastic fluids in domains with outlets to infinity J. Math. Fluid Mech. 2000 185 218
[32] On a class of exact solutions to the equations of motion of a 2D grade fluids J. Eng. Sci. 1981 1009 1014
[33] A note on unsteady unidirectional flows of a non-Newtonian fluid Int. J. Nonlinear Mech. 1982 369 373
Cité par Sources :