Steady state non-Newtonian flow with strain rate dependent viscosity in thin tube structure with no slip boundary condition
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 18.

Voir la notice de l'article provenant de la source EDP Sciences

The steady state non-Newtonian flow, with strain rate dependent viscosity in a thin tube structure, with no slip boundary condition, is considered. Applying the Banach fixed point theorem we prove the existence and uniqueness of a solution. An asymptotic approximation is constructed and justified by an error estimate.
DOI : 10.1051/mmnp/2022005

Grigory Panasenko 1 ; Konstantin Pileckas 2 ; Bogdan Vernescu 3

1 University of Lyon, UJM, Institute Camille Jordan UMR CNRS 5208, 23 rue P. Michelon, 42023, Saint-Etienne, France
2 Institute of Applied Mathematics, Vilnius University, Naugarduko Str., 24, Vilnius 03225, Lithuania
3 Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609, USA
@article{MMNP_2022_17_a28,
     author = {Grigory Panasenko and Konstantin Pileckas and Bogdan Vernescu},
     title = {Steady state {non-Newtonian} flow with strain rate dependent viscosity in thin tube structure with no slip boundary condition},
     journal = {Mathematical modelling of natural phenomena},
     eid = {18},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022005/}
}
TY  - JOUR
AU  - Grigory Panasenko
AU  - Konstantin Pileckas
AU  - Bogdan Vernescu
TI  - Steady state non-Newtonian flow with strain rate dependent viscosity in thin tube structure with no slip boundary condition
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022005/
DO  - 10.1051/mmnp/2022005
LA  - en
ID  - MMNP_2022_17_a28
ER  - 
%0 Journal Article
%A Grigory Panasenko
%A Konstantin Pileckas
%A Bogdan Vernescu
%T Steady state non-Newtonian flow with strain rate dependent viscosity in thin tube structure with no slip boundary condition
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022005/
%R 10.1051/mmnp/2022005
%G en
%F MMNP_2022_17_a28
Grigory Panasenko; Konstantin Pileckas; Bogdan Vernescu. Steady state non-Newtonian flow with strain rate dependent viscosity in thin tube structure with no slip boundary condition. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 18. doi : 10.1051/mmnp/2022005. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022005/

[1] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).

[2] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I Commun. Pure Appl. Math. 1959 623 727

[3] Solutions of some problems of vector analysis related to operators div and grad Proc. Semin. S.L. Sobolev 1980 5 40

[4] Asymptotic analysis of a Bingham fluid in a thin T-like shaped structure J. Math Pures Appl. 2019 148 166

[5] One dimensional models for blood flow in arteries J. Eng. Math. 2003 251 276

[6] P. Galdi, R. Rannacher, A.M. Robertson and S. Turek, Hemodynamical Flows, Modeling, Analysis and Simulation. Oberwolfach Seminars, V.37, Birkhauser, Basel, Boston, Berlin (2008).

[7] P. Galdi, An Introduction to the Mathematical Theory of Navier-Stokes Equations. Springer (1994).

[8] Certain problems of vector analysis, Zapiski Nauchn. Sem. LOMI, 1984, 138, 65-85 Engl. transl Sov. Math. 1986 469 483

[9] Non-stationary Poiseuille-type solutions for the second-grade fluid flow Lithuanian Math. J. 2012 155 171

[10] The second grade fluid flow problem in an infinite pipe Asymptotic Anal. 2013 237 262

[11] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluid. Gordon and Breach (1969).

[12] On some problems of vector analysis and generalized formulations of boundary value problems for the Navier-Stokes equations Zapiski Nauchn. Sem. LOMI 59 (1976) 81-116. English Transl.: J. Sov. Math. 1978 257 285

[13] O.A. Ladyzhenskaya and N.N. Ural'ceva, Linear and Quasi-Linear Elliptic Equations. Academic Press, New York (1968).

[14] E.M. Landis, Second Order Elliptic and Parabolic Equations. Nauka, Moscow (1971).

[15] Steady flow of a non-Newtonian fluid in unbounded channels and pipes Math. Models Methods Appl. Sci. 2000 1425 1445

[16] A note on Kirchhoff junction rule for power-law fluids Zeitschrift für Naturforschung A 2015 695 702

[17] Asymptotic partial domain decomposition in thin tube structures: numerical experiments Int. J. Multiscale Comput. Eng. 2013 407 441

[18] S.A. Nazarov and B.A. Plamenevskiy, Elliptic Problems in Domains with Piecewise Smooth Boundary. Nauka, Moscow (1991).

[19] On the asymptotic behaviour at infinity of solutions in linear elasticity Arch. Rat. Mech. Anal. 1982 29 53

[20] Asymptotic expansion of the solution of Navier-Stokes equation in a tube structure C.R. Acad. Sci. Paris 1998 867 872

[21] G. Panasenko, Multi-scale Modeling for Structures and Composites. Springer, Dordrecht (2005).

[22] Divergence equation in thin-tube structure Applicable Anal. 2015 1450 1459

[23] Flows in a tube structure: equation on the graph J. Math. Phys. 2014 081505

[24] Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. I. The case without boundary layer-in-time Nonlinear Anal. Series A, Theory Methods Appl. 2015 125 168

[25] Steady state non-Newtonian flow in thin tube structure: equation on the graph Algebra Anal. 2021 197 214

[26] Steady state non-Newtonian flow with strain rate dependent viscosity in domains with cylindrical outlets to infinity Nonlinear Anal.: Modeling Controle 2021 1166 1199

[27] Non-Newtonian flows in domains with non-compact boundaries Nonlinear Anal. A 2019 214 229

[28] Navier-Stokes system in domains with cylindrical outlets to infinity. Leray's problem Handbook of Mathematical Fluid Dynamics 2007 445 647

[29] Weighted Lq -solvability of the steady Stokes system in domains with incompact boundaries Math. Models Methods Appl. Sci. 1996 97 136

[30] On the non-stationary linearized Navier-Stokes problem in domains with cylindrical outlets to infinity Math. Ann. 2005 395 419

[31] Steady flows of viscoelastic fluids in domains with outlets to infinity J. Math. Fluid Mech. 2000 185 218

[32] On a class of exact solutions to the equations of motion of a 2D grade fluids J. Eng. Sci. 1981 1009 1014

[33] A note on unsteady unidirectional flows of a non-Newtonian fluid Int. J. Nonlinear Mech. 1982 369 373

Cité par Sources :