Mathematical modeling of inflammatory processes of atherosclerosis
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 5.

Voir la notice de l'article provenant de la source EDP Sciences

Atherosclerosis is a chronic disease which involves the build up of cholesterol and fatty deposits within the inner lining of the artery. It is associated with a progressive thickening and hardening of the arterial wall that result in narrowing of the vessel lumen and restriction of blood flow to vital organs. These events may cause heart attack or stroke, the commonest causes of death worldwide. In this paper we study the early stages of atherosclerosis via a mathematical model of partial differential equations of reaction-diffusion type. The model includes several key species and identifies endothelial hyperpermeability, believed to be a precursor on the onset of atherosclerosis. For simplicity, we reduce the system to a monotone system and provide a biological interpretation for the stability analysis according to endothelial functionality. We investigate as well the existence of solutions of traveling waves type along with numerical simulations. The obtained results are in good agreement with current biological knowledge. Likewise, they confirm and generalize results of mathematical models previously performed in literature. Then, we study the non monotone reduced model and prove the existence of perturbed solutions and perturbed waves, particularly in the bistable case. Finally, we extend the study by considering the complete model proposed initially, perform numerical simulations and provide more specific results. We study the consistency between the reduced and complete model analysis for a certain range of parameters, we elaborate bifurcation diagrams showing the evolution of inflammation upon endothelial permeability and LDL accumulation and we consider the effect of anti-inflammatory process on the system behavior. In this model, the regulation of atherosclerosis progression is mediated by anti-inflammatory responses that, up to certain extent, lead to plaque regression.
DOI : 10.1051/mmnp/2022004

G. Abi Younes 1 ; N. El Khatib 2

1 Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France.
2 Department of Computer Science and Mathematics, Lebanese American University P.O. Box 36, Byblos, Lebanon.
@article{MMNP_2022_17_a22,
     author = {G. Abi Younes and N. El Khatib},
     title = {Mathematical modeling of inflammatory processes of atherosclerosis},
     journal = {Mathematical modelling of natural phenomena},
     eid = {5},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022004/}
}
TY  - JOUR
AU  - G. Abi Younes
AU  - N. El Khatib
TI  - Mathematical modeling of inflammatory processes of atherosclerosis
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022004/
DO  - 10.1051/mmnp/2022004
LA  - en
ID  - MMNP_2022_17_a22
ER  - 
%0 Journal Article
%A G. Abi Younes
%A N. El Khatib
%T Mathematical modeling of inflammatory processes of atherosclerosis
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022004/
%R 10.1051/mmnp/2022004
%G en
%F MMNP_2022_17_a22
G. Abi Younes; N. El Khatib. Mathematical modeling of inflammatory processes of atherosclerosis. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 5. doi : 10.1051/mmnp/2022004. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022004/

[1] D. Abraham, O. Distler How does endothelial cell injury start? The role of endothelin in systemic sclerosis Arthritis Res Ther 2007 S2

[2] L. Ai, K. Vafai A coupling model for macromolecule transport in a stenosed arterial wall Int. J. Heat Mass Transfer 2006 1568 1591

[3] M. Atif Khan Bulelzai, Mathematical Models for Atherosclerotic Plaque Evolution. Ph.D. thesis, University of Singh (2013).

[4] E. August, K.H. Parker, M. Barahona A dynamical model of lipoprotein metabolism Bull. Math. Biol 2007 1233 1254

[5] B. Bartlett, H.P. Ludewick, A. Misra, S. Lee, G. Dwivedi Macrophages and T cells in atherosclerosis: a translational perspective Am. J. Physiol. Heart Circ. Physiol 2019 H375 H386

[6] A.M.W. Bartosch, R. Mathews, J.M. Tarbell Biophys. J 2017 101 108

[7] D. Bayik, D. Tross, L.A. Haile, D. Verthelyi, D.M. Klinman Regulation of the maturation of human monocytes into immunosuppressive macrophages Blood Adv 2017 2510 2519

[8] V. Bezyaev, N. Sadekov, V. Volpert A model of chronic inflammation in atherosclerosis Math. Model. Biomed 2020 04002

[9] Y. Bi, J. Chen, F. Hu, J. Liu, M. Li, L. Zhao M2 macrophages as a potential target for antiatherosclerosis treatment Neural. Plast 2019 6724903

[10] M.L. Brophy, Y. Dong, H. Wu, H.N.A. Rahman, K. Song, H. Chen Eating the dead to keep atherosclerosis at bay Front. Cardiovasc. Med 2017

[11] P.D. Cabral, N.J. Hong, J.L. Garvin Shear stress increases nitric oxide production in thick ascending limbs Am. J. Physiol. Renal Physiol 2010 F1185 F1192

[12] C.V. Carman, R. Martinelli T lymphocyte–endothelial interactions: emerging understanding of trafficking and antigen-specific immunity Front Immunol 2015

[13] D.S. Celermajer, C.K. Chow, E. Marijon, N.M. Anstey, K.S. Woo Cardiovascular disease in the developing world: prevalences, patterns, and the potential of early disease detection J. Am. Coll. Cardiol 2012 1207 1216

[14] C.A. Cobbold, J.A. Sherratt, S.R.J. Maxwell Lipoprotein oxidation and its significance for atherosclerosis: a mathematical approach Bull. Math. Biol 2002 65 95

[15] N.C. Di Paolo, D.M. Shayakhmetov Interleukin 1α and the inflammatory process Nat. Immunol 2016 906 913

[16] G.A. Duque, A. Descoteaux Macrophage cytokines: involvement in immunity and infectious diseases Front. Immunol 2014

[17] N. El Khatib, S. Génieys, B. Kazmierczak, V. Volpert Reaction–diffusion model of atherosclerosis development J. Math. Biol 2012 349 374

[18] N. El Khatib, S. Génieys, V. Volpert Atherosclerosis initiation modeled as an inflammatory process Math. Model. Nat. Phenom 2007 126 141

[19] N. El Khatib, O. Kafi, A. Sequeira, S. Simakov, Yu. Vassilevski, V. Volpert Mathematical modelling of atherosclerosis Math. Model. Nat. Phenom 2019 603

[20] A.R. Fatkhullina, I.O. Peshkova, E.K. Koltsova The role of cytokines in the development of atherosclerosis Biochemistry (Mosc) 2016 1358 1370

[21] S. Freigang, F. Ampenberger, A. Weiss, T.D. Kanneganti, Y. Iwakura, M. Hersberger, M. Kopf Fatty acid-induced mitochondrial uncoupling elicits inflammasome-independent IL − 1α and sterile vascular inflammation in atherosclerosis Nat. Immunol 2013 1045 1053

[22] T. Gerhardt, K. Ley Monocyte trafficking across the vessel wall Cardiovasc. Res 2015 321 330

[23] M. Ghim, Y. Mohamied, P.D. Weinberg The role of tricellular junctions in the transport of macromolecules across endothelium Cardiovasc. Eng. Tech 2021 101 113

[24] D.M. Greif, M. Kumar, J.K. Lighthouse, J. Hum, A. An, L. Ding, K. Red-Horse, F. Hernan Espinoza, L. Olson, S. Offermanns, M.A. Krasnow Radial construction of an arterial wall Dev. Cell 2012 482 493

[25] H.A.R. Hadi, C.S. Carr, J. Al Suwaidi Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome Vascu. Health Risk Manag 2005 183 198

[26] W. Hao, A. Friedman The LDL-HDL profile determines the risk of atherosclerosis: a mathematical model Plos One 2014

[27] B.J. Hunt, K.M. Jurd Endothelial cell activation BMJ 1998 1328 1329

[28] A. Ibragimov, C. Mcneal, L. Ritter, J. Walton A mathematical model of atherogenesis as an inflammatory response Math. Med. Biol 2015 305 333

[29] F. Ito, T. Ito High-density lipoprotein (HDL) triglyceride and oxidized HDL: new lipid biomarkers of lipoprotein-related atherosclerotic cardiovascular disease Antioxidants (Basel) 2020 362

[30] S. Kawashima, M. Yokoyama Dysfunction of endothelial nitric oxide synthase and atherosclerosis Arterioscl. Thromb. Vasc. Biol 2004 998 1005

[31] U. Laufs, V. La Fata, J. Plutzky, J.K. Liao Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors Circulation 1998 1129 1135

[32] W. Lee, W.C. Liles Endothelial activation, dysfunction and permeability during severe infections Curr. Opin. Hematol 2011 191 196

[33] E. Leiva, S. Wehinger, L. Guzmán and R. Orrego, Role of oxidized LDL in atherosclerosis. Ann. N. Y. Acad. Sci. DOI: 10.5772/59375 (2015).

[34] B.D. Li, J.L. Mehta Oxidized LDL, a critical factor in atherogenesis Cardiovasc. Res 2005 353 354

[35] J.K. Liao Linking endothelial dysfunction with endothelial cell activation J. Clin. Invest 2013 540 541

[36] P. Libby The molecular mechanisms of the thrombotic complications of atherosclerosis J. Int. Med 2008 517 527

[37] P. Libby Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond J. Am. Coll. Cardiol 2017 2278 2289

[38] P. Libby, K. Bornfeldt, A.R. Tall Atherosclerosis: successes, surprises, and future challenges Circ Res 2016 531 534

[39] P. Libby, J.E. Buring, L. Badimon, G.K. Hansson, J. Deanfield, M. Sommer Bittencourt, L. Tokgözoglu, E.F. Lewis Atherosclerosis Nat. Rev. Disease Primers 2019

[40] A.K. Lund Oxidants and endothelial dysfunction Compreh. Toxicol 2018 252 281

[41] P. Macke Consigny Pathogenesis of atherosclerosis AJR 1995 553 558

[42] C. Mckay, S. Mckee, N. Mottram, T. Mulholland, S. Wilson Towards a Model of Atherosclerosis Strathclyde Mathematics Research Report 2005

[43] D. Mozaffarian, E.J. Benjamin, A.S. Go Heart disease and strokestatistics 2016 update: a report from the American Heart Association Circulation 2016

[44] H.N. Mozar, D.G. Bal, S.A. Farag The natural history of atherosclerosis: an ecologic perspective Atherosclerosis 1990 157 164

[45] M. Mudau, A. Genis, A. Lochner, H. Strijdom Endothelial dysfunction: the early predictor of atherosclerosis Cardiovasc. J. Afr 2012 222 231

[46] S. Mundi, M. Massaro, E. Scoditti, M.A. Carluccio V.W.M. Van Hinsbergh, M.L. Iruela-Arispe and R. De Caterina, Endothelial permeability, LDL deposition, and cardiovascular risk factors–a review ESC Cardiovasc. Res 2018 35 52

[47] M.T. Nguyen, S. Fernando, N. Schwarz, J. Tm Tan, C.A. Bursill, P.J. Psaltis Inflammation as a therapeutic target in atherosclerosis J. Clin. Med 2019 1109

[48] A. Ougrinovskaia, R. Thompson, M. Myerscough An ODE model of early stages of atherosclerosis: mechanisms of the inflammatory response Bull. Math. Biol 2010 1534 1561

[49] A.V. Panfilov, H. Dierckx, V. Volpert (INVITED) Reaction-diffusion waves in cardiovascular diseases Physica D 2019 1 34

[50] R. Ross Atherosclerosis: an inflammatory disease N. Engl. J. Med 1999 115 126

[51] T. Silva, W. Jäger, M. Neuss-Raduc, A. Sequeira Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability J. Theor. Biol 2020

[52] I. Tabas, A.H. Lichtman Monocyte-macrophages and T cells in atherosclerosis Immunity 2017 621 634

[53] S.S. Thosar, B.D. Johnson, J.D. Johnston, J.P. Wallace Sitting and endothelial dysfunction: the role of shear stress Med. Sci. Monit 2012 173 180

[54] D. Tousoulis, A.M. Kampoli, C. Tentolouris, N. Papageorgiou, C. Stefanadis The role of nitric oxide on endothelial function Curr. Vasc. Pharmacol. 2012 4 18

[55] A. Tran-Dinh, D. Diallo, S. Delbosc, L.M. Varela-Perez, Q.B. Dang, B. Lapergue, E. Burillo, J.B. Michel, A. Levoye, J.L. Martin-Ventura, O. Meilhac HDL and endothelial protection Br. J. Pharmacol 2013 493 511

[56] V. Volpert, Elliptic Partial Differential Equations. Volume 2: Reaction-Diffusion equations. Birkhauser (2014).

[57] I. Wendelhag, O. Wiklund, J. Wikstrand On quantifying plaque size and Intima-Media thickness in carotid and femoral arteries Arterioscler. Thromb. Vasc. Biol 1996 843 850

Cité par Sources :