Afshin Farhadi 1 ; Emmanuel Hanert 1, 2
@article{10_1051_mmnp_2022003,
author = {Afshin Farhadi and Emmanuel Hanert},
title = {A fractional diffusion model of {CD8+} {T} cells response to parasitic infection in the brain},
journal = {Mathematical modelling of natural phenomena},
eid = {3},
year = {2022},
volume = {17},
doi = {10.1051/mmnp/2022003},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022003/}
}
TY - JOUR AU - Afshin Farhadi AU - Emmanuel Hanert TI - A fractional diffusion model of CD8+ T cells response to parasitic infection in the brain JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022003/ DO - 10.1051/mmnp/2022003 LA - en ID - 10_1051_mmnp_2022003 ER -
%0 Journal Article %A Afshin Farhadi %A Emmanuel Hanert %T A fractional diffusion model of CD8+ T cells response to parasitic infection in the brain %J Mathematical modelling of natural phenomena %D 2022 %V 17 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022003/ %R 10.1051/mmnp/2022003 %G en %F 10_1051_mmnp_2022003
Afshin Farhadi; Emmanuel Hanert. A fractional diffusion model of CD8+ T cells response to parasitic infection in the brain. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 3. doi: 10.1051/mmnp/2022003
[1] , , , , Analytical and numerical study of the HIV-1 infection of CD4+ T-cells conformable fractional mathematical model that causes acquired immunodeficiency syndrome with the effect of antiviral drug therapy Math. Methods Appl. Sci 2020
[2] , , , , , , , Subtle CXCR3-dependent chemotaxis of CTLs within infected tissue allows efficient target localization J. Immunol 2015 5285 5295
[3] , , , Scale-free dynamics in the movement patterns of jackals Oikos 2002 134 140
[4] D. Baleanu, B. Ghanbari, J.H. Asad, A. Jajarmi and H.M. Pirouz, Planar system-masses in an equilateral triangle: numerical study within fractional calculus (2020).
[5] , , , The fractional features of a harmonic oscillator with position-dependent mass Commun. Theor. Phys 2020 055002
[6] , , Analysis of the model of HIV-1 infection of CD4+ T-cell with a new approach of fractional derivative Adv. Differ. Equ 2020 1 17
[7] , , , The distribution of Toxoplasma gondii cysts in the brain of a mouse with latent toxoplasmosis: implications for the behavioral manipulation hypothesis PloS One 2011 e28925
[8] , , , , Spatiotemporal dynamics of virus infection spreading in tissues PloS One 2016 e0168576
[9] , , , , , , , Scale-free foraging by primates emerges from their interaction with a complex environment Proc. Roy. Soc. B 2006 1743 1750
[10] J. Cannon, F. Asperti-Boursin, M. Fricke, K. Letendre and M. Moses, T cell motility within lymph nodes fits a Levy signature (CAM1P. 225) (2014).
[11] , Fluid limit of the continuous-time random walk with general Lévy jump distribution functions Phys. Rev. E 2007 041105
[12] , Fractional diffusion models of option prices in markets with jumps Physica A 2007 749 763
[13] , , A method for simulating stable random variables J. Am. Stat. Assoc 1976 340 344
[14] M. Chaplain and A. Matzavinos, Mathematical modelling of spatio-temporal phenomena in tumour immunology, in Tutorials in Mathematical Biosciences III. Springer (2006) 131–183.
[15] , , Fractional diffusion in plasma turbulence Phys. Plasmas 2004 3854 3864
[16] , , Nondiffusive transport in plasma turbulence: a fractional diffusion approach Phys. Rev. Lett. 2005 065003
[17] T lymphocyte-dependent effector mechanisms of immunity to Toxoplasma gondii Microbes Infect. 1999 699 708
[18] , Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection Clin. Microbiol. Rev. 1998 569 588
[19] , A fractional-order differential equation model of HIV infection of CD4+ T-cells Math. Comput. Model 2009 386 392
[20] J.P. Dubey, Toxoplasmosis of animals and humans. CRC Press (2016).
[21] , , Tissue cyst rupture in mice chronically infected with Toxoplasma gondii Parasitol. Res. 1989 599 603
[22] , , , , , , , Parasite-induced IL-12 stimulates early IFN-gamma synthesis and resistance during acute infection with Toxoplasma gondii J. Immunol 1994 2533 2543
[23] , , Growth and development of Toxoplasma gondii in human neurons and astrocytes J. Neuropathol. Exp. Neurol 1996 1150 1156
[24] Congenital toxoplasmosis: a review Neonatal Netw 2015 274 278
[25] A comparison of three Eulerian numerical methods for fractional-order transport models Environ. Fluid Mech 2010 7 20
[26] On the numerical solution of space-time fractional diffusion models Comput. Fluids 2011 33 39
[27] Front dynamics in a two-species competition model driven by Lévy flights J. Theor. Biol. 2012 134 142
[28] , A Chebyshev pseudospectral method to solve the space-time tempered fractional diffusion equation SIAM J. Sci. Comput 2014 A1797 A1812
[29] , , Front dynamics in fractional-order epidemic models J. Theor. Biol. 2011 9 16
[30] , , , , , , , , , Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells Nature 2012 545 548
[31] , The blood-brain barrier/neurovascular unit in health and disease Pharmacolog. Rev. 2005 173 185
[32] , , , , , , , , , Environmental context explains Lévy and Brownian movement patterns of marine predators Nature 2010 1066 1069
[33] , A new fractional analysis on the interaction of HIV with CD4+ T-cells Chaos Solitons Fract 2018 221 229
[34] , A new iterative method for the numerical solution of high-order non-linear fractional boundary value problems Front. Phys 2020 220
[35] , On the fractional optimal control problems with a general derivative operator Asian J. Control 2021 1062 1071
[36] , , , , , , , , , Dynamic imaging of CD8+ T cells and dendritic cells during infection with Toxoplasma gondii PLoS Pathog 2009 e1000505
[37] , , Boundary conditions for two-sided fractional diffusion J. Comput. Phys 2019 1089 1107
[38] J. Klafter and I.M. Sokolov, First steps in random walks: from tools to applications. Oxford University Press (2011).
[39] , , , , , , , , , Endothelial cells are a replicative niche for entry of Toxoplasma gondii to the central nervous system Nat. Microbiol. 2016 1 8
[40] , , T cell migration, search strategies and mechanisms Nat. Rev. Immunol 2016 193
[41] , , , Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis Bull. Math. Biol 1994 295 321
[42] T.A. Landrith, T.H. Harris and E.H. Wilson, Characteristics and critical function of CD8+ T cells inthe Toxoplasma-infected brain, in vol. 37 of Seminars in immunopathology. Springer (2015) 261–270.
[43] , , , , , , Zigzag generalized levy walk: the in vivo search strategy of immunocytes Theranostics 2015 1275
[44] , , , Signatures of a globally optimal searching strategy in the three-dimensional foraging flights of bumblebees Sci. Rep. 2016 1 13
[45] , , , Toxoplasma gondii in primary rat CNS cells: differential contribution of neurons, astrocytes, and microglial cells for the intracerebral development and stage differentiation Exp. Parasitol 1999 23 32
[46] , Toxoplasmic encephalitis J. Infect. Dis 1988 1 6
[47] , Toxoplasma gondii. Principles and Practice of Infectious Diseases 1990 2090 2103
[48] , The random walk’s guide to anomalous diffusion: a fractional dynamics approach Phys. Rep 2000 1 77
[49] , , , Two-photon imaging of lymphocyte motility and antigen response in intact lymph node Science 2002 1869 1873
[50] , , , A hybrid functions numerical scheme for fractional optimal control problems: application to nonanalytic dynamic systems J. Vibr. Control 2018 5030 5043
[51] , Random walks on lattices. II J. Math. Phys 1965 167 181
[52] , , , Distributed adaptive search in T cells: lessons from ants Front. Immunol. 2019 1357
[53] , , , , , , , , , ROCK regulates the intermittent mode of interstitial T cell migration in inflamed lungs Nat. Commun. 2017 1 14
[54] , , , , , , , , Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells PLoS Biol 2005 e150
[55] A. Okubo and S.A. Levin, Vol. 14 of Diffusion and ecological problems: modern perspectives. Springer Science Business Media (2013).
[56] K. Oldham and J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier (1974).
[57] W.E. Paul, Fundamental immunology. New York (2003).
[58] I. Podlubny, Fractional differential equations, vol. 198 of Mathematics in Science and Engineering. Academic Press, San Diego, Calif, USA (1999).
[59] , , , , T-cell motility in the early stages of the immune response modeled as a random walk amongst targets Phys. Rev. E 2006 011910
[60] , , , , , Defining the cell cycle for the tachyzoite stage of Toxoplasma gondii Mol. Biochem. Parasitol 2001 165 175
[61] , , Multiscale analysis of collective motion and decision-making in swarms: an advection–diffusion equation with memory approach J. Theor. Biol. 2010 893 913
[62] , Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search PloS One 2007 e354
[63] , , , , , Displaced honey bees perform optimal scale-free search flights Ecology 2007 1955 1961
[64] , , , , Honeybees perform optimal scale-free searching flights when attempting to locate a food source J. Exp. Biol 2007 3763 3770
[65] , , , , , , , , , A comparison of random vs. chemotaxis-driven contacts of T cells with dendritic cells during repertoire scanning J. Theor. Biol. 2008 732 751
[66] , , , A new adaptive synchronization and hyperchaos control of a biological snap oscillator Chaos Solitons Fractals 2020 109919
[67] , , Fractional calculus and continuous-time finance Physica A 2000 376 384
[68] , , , Toxoplasma gondii infection of neurons induces neuronal cytokine and chemokine production, but gamma interferon-and tumor necrosis factor-stimulated neurons fail to inhibit the invasion and growth of T. gondii. Infect. Immun. 2001 7889 7893
[69] , , , , , , , , , Scaling laws of marine predator search behavior Nature 2008 1098 1102
[70] , , Toxoplasma gondii: determinants of tachyzoite to bradyzoite conversion Parasitol. Res. 2010 253 260
[71] , , , , , A mathematical model for within-host Toxoplasma gondii invasion dynamics Math. Biosci. Eng 2012 647
[72] , , , , , Evidence for finely-regulated asynchronous growth of Toxoplasma gondii cysts based on data-driven model selection PLoS Comput. Biol 2013 e1003283
[73] , , , , , , , , Removal of Toxoplasma gondii cysts from the brain by perforin-mediated activity of CD8+ T cells Am. J. Pathol. 2010 1607 1613
[74] , , , , , Penetration of CD8+ cytotoxic T cells into large target, tissue cysts of Toxoplasma gondii, leads to its elimination Am. J. Pathol 2019 1594 1607
[75] , Toxoplasma gondii and schizophrenia Emerg. Infect. Dis. 2003 1375
[76] , , , , A Lévy-flight diffusion model to predict transgenic pollen dispersal J. Royal Soc. Interface 2017 20160889
[77] C. Von Economo, Cellular structure of the human cerebral cortex. Karger Medical and Scientific Publishers (2009).
[78] , , , Importance of IFN-γ-mediated expression of endothelial VCAM-1 on recruitment of CD8+ T cells into the brain during chronic infection with Toxoplasma gondii J. Interf. Cytokine Res. 2007 329 338
[79] , , , A stochastic view of lymphocyte motility and trafficking within the lymph node Immunolog. Rev. 2003 136 159
[80] L.M. Weiss and K. Kim, Toxoplasma gondii: the model apicomplexan. Perspectives and methods. Elsevier (2011).
[81] A. Weron and R. Weron, Computer simulation of Lévy α-stable variables and processes, in Chaos–The interplay between stochastic and deterministic behavior. Springer (1995) 379–392.
[82] , , Trafficking of immune cells in the central nervous system J. Clin. Invest. 2010 1368 1379
[83] , , , , Directed migration of positively selected thymocytes visualized in real time PLoS Biol 2005 e160
[84] , , The importance of lytic and nonlytic immune responses in viral infections Trends Immunol 2002 194 200
[85] , , Brains and brawn: Toxoplasma infections of the central nervous system and skeletal muscle Trends Parasitol. 2017 519 531
Cité par Sources :