A fractional diffusion model of CD8+ T cells response to parasitic infection in the brain
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 3

Voir la notice de l'article provenant de la source EDP Sciences

Toxoplasma gondii (T. gondii) is a parasitic pathogen that causes serious brain diseases in fetuses and patients with immunodeficiency, particularly AIDS patients. In the field of immunology, a large number of studies have shown that effector CD8+ T cells can respond to T. gondii infection in the brain tissue through controlling the proliferation of intracellular parasites and killing infected brain cells. These protective mechanisms do not occur without T cell movement and searching for infected cells, as a fundamental feature of the immune system. Following infection with a pathogen in a tissue, in their search for infected cells, CD8+ T cells can perform different stochastic searches, including Lévy and Brownian random walks. Statistical analysis of CD8+ T cell movement in the brain of T. gondii-infected mouse has determined that the search strategy of CD8+ T cells in response to infected brain cells could be described by a Lévy random walk. In this work, by considering a Lévy distribution for the displacements, we propose a space fractional-order diffusion equation for the T cell density in the infected brain tissue. Furthermore, we derive a mathematical model representing CD8+ T cell response to infected brain cells. By solving the model equations numerically, we perform a comparison between Lévy and Brownian search strategies. we demonstrate that the Lévy search pattern enables CD8+ T cells to spread over the whole brain tissue and hence they can rapidly destroy infected cells distributed throughout the brain tissue. However, with the Brownian motion assumption, CD8+ T cells travel through the brain tissue more slowly, leading to a slower decline of the infected cells faraway from the source of T cells. Our results show that a Lévy search pattern aids CD8+ T cells in accelerating the elimination of infected cells distributed broadly within the brain tissue. We suggest that a Lévy search strategy could be the result of natural evolution, as CD8+ T cells learn to enhance the immune system efficiency against pathogens.
DOI : 10.1051/mmnp/2022003

Afshin Farhadi 1 ; Emmanuel Hanert 1, 2

1 Earth and Life Institute (ELI), Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium.
2 Institute of Mechanics, Material and Civil Engineering (IMMC), Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium.
@article{10_1051_mmnp_2022003,
     author = {Afshin Farhadi and Emmanuel Hanert},
     title = {A fractional diffusion model of {CD8+} {T} cells response to parasitic infection in the brain},
     journal = {Mathematical modelling of natural phenomena},
     eid = {3},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022003/}
}
TY  - JOUR
AU  - Afshin Farhadi
AU  - Emmanuel Hanert
TI  - A fractional diffusion model of CD8+ T cells response to parasitic infection in the brain
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022003/
DO  - 10.1051/mmnp/2022003
LA  - en
ID  - 10_1051_mmnp_2022003
ER  - 
%0 Journal Article
%A Afshin Farhadi
%A Emmanuel Hanert
%T A fractional diffusion model of CD8+ T cells response to parasitic infection in the brain
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022003/
%R 10.1051/mmnp/2022003
%G en
%F 10_1051_mmnp_2022003
Afshin Farhadi; Emmanuel Hanert. A fractional diffusion model of CD8+ T cells response to parasitic infection in the brain. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 3. doi: 10.1051/mmnp/2022003

[1] K.K. Ali, M.S. Osman, H.M. Baskonus, N.S. Elazabb, E. İlhan Analytical and numerical study of the HIV-1 infection of CD4+ T-cells conformable fractional mathematical model that causes acquired immunodeficiency syndrome with the effect of antiviral drug therapy Math. Methods Appl. Sci 2020

[2] S. Ariotti, J.B. Beltman, R. Borsje, M.E. Hoekstra, W.P. Halford, J.B. Haanen, R.J. De Boer, T.N. Schumacher Subtle CXCR3-dependent chemotaxis of CTLs within infected tissue allows efficient target localization J. Immunol 2015 5285 5295

[3] R. Atkinson, C. Rhodes, D. Macdonald, R. Anderson Scale-free dynamics in the movement patterns of jackals Oikos 2002 134 140

[4] D. Baleanu, B. Ghanbari, J.H. Asad, A. Jajarmi and H.M. Pirouz, Planar system-masses in an equilateral triangle: numerical study within fractional calculus (2020).

[5] D. Baleanu, A. Jajarmi, S.S. Sajjadi, J.H. Asad The fractional features of a harmonic oscillator with position-dependent mass Commun. Theor. Phys 2020 055002

[6] D. Baleanu, H. Mohammadi, S. Rezapour Analysis of the model of HIV-1 infection of CD4+ T-cell with a new approach of fractional derivative Adv. Differ. Equ 2020 1 17

[7] M. Berenreiterová, J. Flegr, A.A. Kuběna, P. Němec The distribution of Toxoplasma gondii cysts in the brain of a mouse with latent toxoplasmosis: implications for the behavioral manipulation hypothesis PloS One 2011 e28925

[8] G. Bocharov, A. Meyerhans, N. Bessonov, S. Trofimchuk, V. Volpert Spatiotemporal dynamics of virus infection spreading in tissues PloS One 2016 e0168576

[9] D. Boyer, G. Ramos-Fernández, O. Miramontes, J.L. Mateos, G. Cocho, H. Larralde, H. Ramos, F. Rojas Scale-free foraging by primates emerges from their interaction with a complex environment Proc. Roy. Soc. B 2006 1743 1750

[10] J. Cannon, F. Asperti-Boursin, M. Fricke, K. Letendre and M. Moses, T cell motility within lymph nodes fits a Levy signature (CAM1P. 225) (2014).

[11] Á. Cartea, D. Del Castillo-Negrete Fluid limit of the continuous-time random walk with general Lévy jump distribution functions Phys. Rev. E 2007 041105

[12] A. Cartea, D. Del Castillo-Negrete Fractional diffusion models of option prices in markets with jumps Physica A 2007 749 763

[13] J.M. Chambers, C.L. Mallows, B. Stuck A method for simulating stable random variables J. Am. Stat. Assoc 1976 340 344

[14] M. Chaplain and A. Matzavinos, Mathematical modelling of spatio-temporal phenomena in tumour immunology, in Tutorials in Mathematical Biosciences III. Springer (2006) 131–183.

[15] D. Del Castillo-Negrete, B. Carreras, V. Lynch Fractional diffusion in plasma turbulence Phys. Plasmas 2004 3854 3864

[16] D. Del Castillo-Negrete, B. Carreras, V. Lynch Nondiffusive transport in plasma turbulence: a fractional diffusion approach Phys. Rev. Lett. 2005 065003

[17] E.Y. Denkers T lymphocyte-dependent effector mechanisms of immunity to Toxoplasma gondii Microbes Infect. 1999 699 708

[18] E.Y. Denkers, R.T. Gazzinelli Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection Clin. Microbiol. Rev. 1998 569 588

[19] Y. Ding, H. Ye A fractional-order differential equation model of HIV infection of CD4+ T-cells Math. Comput. Model 2009 386 392

[20] J.P. Dubey, Toxoplasmosis of animals and humans. CRC Press (2016).

[21] D. Ferguson, W. Hutchison, E. Pettersen Tissue cyst rupture in mice chronically infected with Toxoplasma gondii Parasitol. Res. 1989 599 603

[22] R.T. Gazzinelli, M. Wysocka, S. Hayashi, E.Y. Denkers, S. Hieny, P. Caspar, G. Trinchieri, A. Sher Parasite-induced IL-12 stimulates early IFN-gamma synthesis and resistance during acute infection with Toxoplasma gondii J. Immunol 1994 2533 2543

[23] S. Halonen, W. Lyman, F. Chiu Growth and development of Toxoplasma gondii in human neurons and astrocytes J. Neuropathol. Exp. Neurol 1996 1150 1156

[24] M.M. Hampton Congenital toxoplasmosis: a review Neonatal Netw 2015 274 278

[25] E. Hanert A comparison of three Eulerian numerical methods for fractional-order transport models Environ. Fluid Mech 2010 7 20

[26] E. Hanert On the numerical solution of space-time fractional diffusion models Comput. Fluids 2011 33 39

[27] E. Hanert Front dynamics in a two-species competition model driven by Lévy flights J. Theor. Biol. 2012 134 142

[28] E. Hanert, C. Piret A Chebyshev pseudospectral method to solve the space-time tempered fractional diffusion equation SIAM J. Sci. Comput 2014 A1797 A1812

[29] E. Hanert, E. Schumacher, E. Deleersnijder Front dynamics in fractional-order epidemic models J. Theor. Biol. 2011 9 16

[30] T.H. Harris, E.J. Banigan, D.A. Christian, C. Konradt, E.D.T. Wojno, K. Norose, E.H. Wilson, B. John, W. Weninger, A.D. Luster Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells Nature 2012 545 548

[31] B.T. Hawkins, T.P. Davis The blood-brain barrier/neurovascular unit in health and disease Pharmacolog. Rev. 2005 173 185

[32] N.E. Humphries, N. Queiroz, J.R. Dyer, N.G. Pade, M.K. Musyl, K.M. Schaefer, D.W. Fuller, J.M. Brunnschweiler, T.K. Doyle, J.D. Houghton Environmental context explains Lévy and Brownian movement patterns of marine predators Nature 2010 1066 1069

[33] A. Jajarmi, D. Baleanu A new fractional analysis on the interaction of HIV with CD4+ T-cells Chaos Solitons Fract 2018 221 229

[34] A. Jajarmi, D. Baleanu A new iterative method for the numerical solution of high-order non-linear fractional boundary value problems Front. Phys 2020 220

[35] A. Jajarmi, D. Baleanu On the fractional optimal control problems with a general derivative operator Asian J. Control 2021 1062 1071

[36] B. John, T.H. Harris, E.D. Tait, E.H. Wilson, B. Gregg, L.G. Ng, P. Mrass, D.S. Roos, F. Dzierszinski, W. Weninger Dynamic imaging of CD8+ T cells and dendritic cells during infection with Toxoplasma gondii PLoS Pathog 2009 e1000505

[37] J.F. Kelly, H. Sankaranarayanan, M.M. Meerschaert Boundary conditions for two-sided fractional diffusion J. Comput. Phys 2019 1089 1107

[38] J. Klafter and I.M. Sokolov, First steps in random walks: from tools to applications. Oxford University Press (2011).

[39] C. Konradt, N. Ueno, D.A. Christian, J.H. Delong, G.H. Pritchard, J. Herz, D.J. Bzik, A.A. Koshy, D.B. Mcgavern, M.B. Lodoen Endothelial cells are a replicative niche for entry of Toxoplasma gondii to the central nervous system Nat. Microbiol. 2016 1 8

[40] M.F. Krummel, F. Bartumeus, A. Gérard T cell migration, search strategies and mechanisms Nat. Rev. Immunol 2016 193

[41] V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S. Perelson Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis Bull. Math. Biol 1994 295 321

[42] T.A. Landrith, T.H. Harris and E.H. Wilson, Characteristics and critical function of CD8+ T cells inthe Toxoplasma-infected brain, in vol. 37 of Seminars in immunopathology. Springer (2015) 261–270.

[43] H. Li, S. Qi, H. Jin, Z. Qi, Z. Zhang, L. Fu, Q. Luo Zigzag generalized levy walk: the in vivo search strategy of immunocytes Theranostics 2015 1275

[44] M. Lihoreau, T.C. Ings, L. Chittka, A.M. Reynolds Signatures of a globally optimal searching strategy in the three-dimensional foraging flights of bumblebees Sci. Rep. 2016 1 13

[45] C.G. Lüder, M. Giraldo-Velásquez, M. Sendtner, U. Gross Toxoplasma gondii in primary rat CNS cells: differential contribution of neurons, astrocytes, and microglial cells for the intracerebral development and stage differentiation Exp. Parasitol 1999 23 32

[46] B.J. Luft, J.S. Remington Toxoplasmic encephalitis J. Infect. Dis 1988 1 6

[47] R. Mccabe, J. Remington Toxoplasma gondii. Principles and Practice of Infectious Diseases 1990 2090 2103

[48] R. Metzler, J. Klafter The random walk’s guide to anomalous diffusion: a fractional dynamics approach Phys. Rep 2000 1 77

[49] M.J. Miller, S.H. Wei, I. Parker, M.D. Cahalan Two-photon imaging of lymphocyte motility and antigen response in intact lymph node Science 2002 1869 1873

[50] F. Mohammadi, L. Moradi, D. Baleanu, A. Jajarmi A hybrid functions numerical scheme for fractional optimal control problems: application to nonanalytic dynamic systems J. Vibr. Control 2018 5030 5043

[51] E.W. Montroll, G.H. Weiss Random walks on lattices. II J. Math. Phys 1965 167 181

[52] M.E. Moses, J.L. Cannon, D.M. Gordon, S. Forrest Distributed adaptive search in T cells: lessons from ants Front. Immunol. 2019 1357

[53] P. Mrass, S.R. Oruganti, G.M. Fricke, J. Tafoya, J.R. Byrum, L. Yang, S.L. Hamilton, M.J. Miller, M.E. Moses, J.L. Cannon ROCK regulates the intermittent mode of interstitial T cell migration in inflamed lungs Nat. Commun. 2017 1 14

[54] T. Okada, M.J. Miller, I. Parker, M.F. Krummel, M. Neighbors, S.B. Hartley, A. O’Garra, M.D. Cahalan, J.G. Cyster Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells PLoS Biol 2005 e150

[55] A. Okubo and S.A. Levin, Vol. 14 of Diffusion and ecological problems: modern perspectives. Springer Science Business Media (2013).

[56] K. Oldham and J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier (1974).

[57] W.E. Paul, Fundamental immunology. New York (2003).

[58] I. Podlubny, Fractional differential equations, vol. 198 of Mathematics in Science and Engineering. Academic Press, San Diego, Calif, USA (1999).

[59] S. Preston, S. Waters, O. Jensen, P. Heaton, D. Pritchard T-cell motility in the early stages of the immune response modeled as a random walk amongst targets Phys. Rev. E 2006 011910

[60] J.R. Radke, B. Striepen, M.N. Guerini, M.E. Jerome, D.S. Roos, M.W. White Defining the cell cycle for the tachyzoite stage of Toxoplasma gondii Mol. Biochem. Parasitol 2001 165 175

[61] M. Raghib, S.A. Levin, I.G. Kevrekidis Multiscale analysis of collective motion and decision-making in swarms: an advection–diffusion equation with memory approach J. Theor. Biol. 2010 893 913

[62] A.M. Reynolds, M.A. Frye Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search PloS One 2007 e354

[63] A.M. Reynolds, A.D. Smith, R. Menzel, U. Greggers, D.R. Reynolds, J.R. Riley Displaced honey bees perform optimal scale-free search flights Ecology 2007 1955 1961

[64] A.M. Reynolds, A.D. Smith, D.R. Reynolds, N.L. Carreck, J.L. Osborne Honeybees perform optimal scale-free searching flights when attempting to locate a food source J. Exp. Biol 2007 3763 3770

[65] T. Riggs, A. Walts, N. Perry, L. Bickle, J.N. Lynch, A. Myers, J. Flynn, J.J. Linderman, M.J. Miller, D.E. Kirschner A comparison of random vs. chemotaxis-driven contacts of T cells with dendritic cells during repertoire scanning J. Theor. Biol. 2008 732 751

[66] S.S. Sajjadi, D. Baleanu, A. Jajarmi, H.M. Pirouz A new adaptive synchronization and hyperchaos control of a biological snap oscillator Chaos Solitons Fractals 2020 109919

[67] E. Scalas, R. Gorenflo, F. Mainardi Fractional calculus and continuous-time finance Physica A 2000 376 384

[68] D. Schlüter, M. Deckert, H. Hof, K. Frei Toxoplasma gondii infection of neurons induces neuronal cytokine and chemokine production, but gamma interferon-and tumor necrosis factor-stimulated neurons fail to inhibit the invasion and growth of T. gondii. Infect. Immun. 2001 7889 7893

[69] D.W. Sims, E.J. Southall, N.E. Humphries, G.C. Hays, C.J. Bradshaw, J.W. Pitchford, A. James, M.Z. Ahmed, A.S. Brierley, M.A. Hindell Scaling laws of marine predator search behavior Nature 2008 1098 1102

[70] S. Skariah, M.K. Mcintyre, D.G. Mordue Toxoplasma gondii: determinants of tachyzoite to bradyzoite conversion Parasitol. Res. 2010 253 260

[71] A. Sullivan, F. Agusto, S. Bewick, C. Su, S. Lenhart, X. Zhao A mathematical model for within-host Toxoplasma gondii invasion dynamics Math. Biosci. Eng 2012 647

[72] A.M. Sullivan, X. Zhao, Y. Suzuki, E. Ochiai, S. Crutcher, M.A. Gilchrist Evidence for finely-regulated asynchronous growth of Toxoplasma gondii cysts based on data-driven model selection PLoS Comput. Biol 2013 e1003283

[73] Y. Suzuki, X. Wang, B.S. Jortner, L. Payne, Y. Ni, S.A. Michie, B. Xu, T. Kudo, S. Perkins Removal of Toxoplasma gondii cysts from the brain by perforin-mediated activity of CD8+ T cells Am. J. Pathol. 2010 1607 1613

[74] A. Tiwari, R. Hannah, J. Lutshumba, E. Ochiai, L.M. Weiss, Y. Suzuki Penetration of CD8+ cytotoxic T cells into large target, tissue cysts of Toxoplasma gondii, leads to its elimination Am. J. Pathol 2019 1594 1607

[75] E.F. Torrey, R.H. Yolken Toxoplasma gondii and schizophrenia Emerg. Infect. Dis. 2003 1375

[76] V. Vallaeys, R.C. Tyson, W.D. Lane, E. Deleersnijder, E. Hanert A Lévy-flight diffusion model to predict transgenic pollen dispersal J. Royal Soc. Interface 2017 20160889

[77] C. Von Economo, Cellular structure of the human cerebral cortex. Karger Medical and Scientific Publishers (2009).

[78] X. Wang, S.A. Michie, B. Xu, Y. Suzuki Importance of IFN-γ-mediated expression of endothelial VCAM-1 on recruitment of CD8+ T cells into the brain during chronic infection with Toxoplasma gondii J. Interf. Cytokine Res. 2007 329 338

[79] S.H. Wei, I. Parker, M.J. Miller, M.D. Cahalan A stochastic view of lymphocyte motility and trafficking within the lymph node Immunolog. Rev. 2003 136 159

[80] L.M. Weiss and K. Kim, Toxoplasma gondii: the model apicomplexan. Perspectives and methods. Elsevier (2011).

[81] A. Weron and R. Weron, Computer simulation of Lévy α-stable variables and processes, in Chaos–The interplay between stochastic and deterministic behavior. Springer (1995) 379–392.

[82] E.H. Wilson, W. Weninger, C.A. Hunter Trafficking of immune cells in the central nervous system J. Clin. Invest. 2010 1368 1379

[83] C.M. Witt, S. Raychaudhuri, B. Schaefer, A.K. Chakraborty, E.A. Robey Directed migration of positively selected thymocytes visualized in real time PLoS Biol 2005 e160

[84] D. Wodarz, J.P. Christensen, A.R. Thomsen The importance of lytic and nonlytic immune responses in viral infections Trends Immunol 2002 194 200

[85] E.A. Wohlfert, I.J. Blader, E.H. Wilson Brains and brawn: Toxoplasma infections of the central nervous system and skeletal muscle Trends Parasitol. 2017 519 531

Cité par Sources :