A fractional diffusion model of CD8+ T cells response to parasitic infection in the brain
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 3.

Voir la notice de l'article provenant de la source EDP Sciences

Toxoplasma gondii (T. gondii) is a parasitic pathogen that causes serious brain diseases in fetuses and patients with immunodeficiency, particularly AIDS patients. In the field of immunology, a large number of studies have shown that effector CD8+ T cells can respond to T. gondii infection in the brain tissue through controlling the proliferation of intracellular parasites and killing infected brain cells. These protective mechanisms do not occur without T cell movement and searching for infected cells, as a fundamental feature of the immune system. Following infection with a pathogen in a tissue, in their search for infected cells, CD8+ T cells can perform different stochastic searches, including Lévy and Brownian random walks. Statistical analysis of CD8+ T cell movement in the brain of T. gondii-infected mouse has determined that the search strategy of CD8+ T cells in response to infected brain cells could be described by a Lévy random walk. In this work, by considering a Lévy distribution for the displacements, we propose a space fractional-order diffusion equation for the T cell density in the infected brain tissue. Furthermore, we derive a mathematical model representing CD8+ T cell response to infected brain cells. By solving the model equations numerically, we perform a comparison between Lévy and Brownian search strategies. we demonstrate that the Lévy search pattern enables CD8+ T cells to spread over the whole brain tissue and hence they can rapidly destroy infected cells distributed throughout the brain tissue. However, with the Brownian motion assumption, CD8+ T cells travel through the brain tissue more slowly, leading to a slower decline of the infected cells faraway from the source of T cells. Our results show that a Lévy search pattern aids CD8+ T cells in accelerating the elimination of infected cells distributed broadly within the brain tissue. We suggest that a Lévy search strategy could be the result of natural evolution, as CD8+ T cells learn to enhance the immune system efficiency against pathogens.
DOI : 10.1051/mmnp/2022003

Afshin Farhadi 1 ; Emmanuel Hanert 1, 2

1 Earth and Life Institute (ELI), Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium.
2 Institute of Mechanics, Material and Civil Engineering (IMMC), Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium.
@article{MMNP_2022_17_a0,
     author = {Afshin Farhadi and Emmanuel Hanert},
     title = {A fractional diffusion model of {CD8+} {T} cells response to parasitic infection in the brain},
     journal = {Mathematical modelling of natural phenomena},
     eid = {3},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022003/}
}
TY  - JOUR
AU  - Afshin Farhadi
AU  - Emmanuel Hanert
TI  - A fractional diffusion model of CD8+ T cells response to parasitic infection in the brain
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022003/
DO  - 10.1051/mmnp/2022003
LA  - en
ID  - MMNP_2022_17_a0
ER  - 
%0 Journal Article
%A Afshin Farhadi
%A Emmanuel Hanert
%T A fractional diffusion model of CD8+ T cells response to parasitic infection in the brain
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022003/
%R 10.1051/mmnp/2022003
%G en
%F MMNP_2022_17_a0
Afshin Farhadi; Emmanuel Hanert. A fractional diffusion model of CD8+ T cells response to parasitic infection in the brain. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 3. doi : 10.1051/mmnp/2022003. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022003/

[1] K.K. Ali, M.S. Osman, H.M. Baskonus, N.S. Elazabb, E. İlhan Analytical and numerical study of the HIV-1 infection of CD4+ T-cells conformable fractional mathematical model that causes acquired immunodeficiency syndrome with the effect of antiviral drug therapy Math. Methods Appl. Sci 2020

[2] S. Ariotti, J.B. Beltman, R. Borsje, M.E. Hoekstra, W.P. Halford, J.B. Haanen, R.J. De Boer, T.N. Schumacher Subtle CXCR3-dependent chemotaxis of CTLs within infected tissue allows efficient target localization J. Immunol 2015 5285 5295

[3] R. Atkinson, C. Rhodes, D. Macdonald, R. Anderson Scale-free dynamics in the movement patterns of jackals Oikos 2002 134 140

[4] D. Baleanu, B. Ghanbari, J.H. Asad, A. Jajarmi and H.M. Pirouz, Planar system-masses in an equilateral triangle: numerical study within fractional calculus (2020).

[5] D. Baleanu, A. Jajarmi, S.S. Sajjadi, J.H. Asad The fractional features of a harmonic oscillator with position-dependent mass Commun. Theor. Phys 2020 055002

[6] D. Baleanu, H. Mohammadi, S. Rezapour Analysis of the model of HIV-1 infection of CD4+ T-cell with a new approach of fractional derivative Adv. Differ. Equ 2020 1 17

[7] M. Berenreiterová, J. Flegr, A.A. Kuběna, P. Němec The distribution of Toxoplasma gondii cysts in the brain of a mouse with latent toxoplasmosis: implications for the behavioral manipulation hypothesis PloS One 2011 e28925

[8] G. Bocharov, A. Meyerhans, N. Bessonov, S. Trofimchuk, V. Volpert Spatiotemporal dynamics of virus infection spreading in tissues PloS One 2016 e0168576

[9] D. Boyer, G. Ramos-Fernández, O. Miramontes, J.L. Mateos, G. Cocho, H. Larralde, H. Ramos, F. Rojas Scale-free foraging by primates emerges from their interaction with a complex environment Proc. Roy. Soc. B 2006 1743 1750

[10] J. Cannon, F. Asperti-Boursin, M. Fricke, K. Letendre and M. Moses, T cell motility within lymph nodes fits a Levy signature (CAM1P. 225) (2014).

[11] Á. Cartea, D. Del Castillo-Negrete Fluid limit of the continuous-time random walk with general Lévy jump distribution functions Phys. Rev. E 2007 041105

[12] A. Cartea, D. Del Castillo-Negrete Fractional diffusion models of option prices in markets with jumps Physica A 2007 749 763

[13] J.M. Chambers, C.L. Mallows, B. Stuck A method for simulating stable random variables J. Am. Stat. Assoc 1976 340 344

[14] M. Chaplain and A. Matzavinos, Mathematical modelling of spatio-temporal phenomena in tumour immunology, in Tutorials in Mathematical Biosciences III. Springer (2006) 131–183.

[15] D. Del Castillo-Negrete, B. Carreras, V. Lynch Fractional diffusion in plasma turbulence Phys. Plasmas 2004 3854 3864

[16] D. Del Castillo-Negrete, B. Carreras, V. Lynch Nondiffusive transport in plasma turbulence: a fractional diffusion approach Phys. Rev. Lett. 2005 065003

[17] E.Y. Denkers T lymphocyte-dependent effector mechanisms of immunity to Toxoplasma gondii Microbes Infect. 1999 699 708

[18] E.Y. Denkers, R.T. Gazzinelli Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection Clin. Microbiol. Rev. 1998 569 588

[19] Y. Ding, H. Ye A fractional-order differential equation model of HIV infection of CD4+ T-cells Math. Comput. Model 2009 386 392

[20] J.P. Dubey, Toxoplasmosis of animals and humans. CRC Press (2016).

[21] D. Ferguson, W. Hutchison, E. Pettersen Tissue cyst rupture in mice chronically infected with Toxoplasma gondii Parasitol. Res. 1989 599 603

[22] R.T. Gazzinelli, M. Wysocka, S. Hayashi, E.Y. Denkers, S. Hieny, P. Caspar, G. Trinchieri, A. Sher Parasite-induced IL-12 stimulates early IFN-gamma synthesis and resistance during acute infection with Toxoplasma gondii J. Immunol 1994 2533 2543

[23] S. Halonen, W. Lyman, F. Chiu Growth and development of Toxoplasma gondii in human neurons and astrocytes J. Neuropathol. Exp. Neurol 1996 1150 1156

[24] M.M. Hampton Congenital toxoplasmosis: a review Neonatal Netw 2015 274 278

[25] E. Hanert A comparison of three Eulerian numerical methods for fractional-order transport models Environ. Fluid Mech 2010 7 20

[26] E. Hanert On the numerical solution of space-time fractional diffusion models Comput. Fluids 2011 33 39

[27] E. Hanert Front dynamics in a two-species competition model driven by Lévy flights J. Theor. Biol. 2012 134 142

[28] E. Hanert, C. Piret A Chebyshev pseudospectral method to solve the space-time tempered fractional diffusion equation SIAM J. Sci. Comput 2014 A1797 A1812

[29] E. Hanert, E. Schumacher, E. Deleersnijder Front dynamics in fractional-order epidemic models J. Theor. Biol. 2011 9 16

[30] T.H. Harris, E.J. Banigan, D.A. Christian, C. Konradt, E.D.T. Wojno, K. Norose, E.H. Wilson, B. John, W. Weninger, A.D. Luster Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells Nature 2012 545 548

[31] B.T. Hawkins, T.P. Davis The blood-brain barrier/neurovascular unit in health and disease Pharmacolog. Rev. 2005 173 185

[32] N.E. Humphries, N. Queiroz, J.R. Dyer, N.G. Pade, M.K. Musyl, K.M. Schaefer, D.W. Fuller, J.M. Brunnschweiler, T.K. Doyle, J.D. Houghton Environmental context explains Lévy and Brownian movement patterns of marine predators Nature 2010 1066 1069

[33] A. Jajarmi, D. Baleanu A new fractional analysis on the interaction of HIV with CD4+ T-cells Chaos Solitons Fract 2018 221 229

[34] A. Jajarmi, D. Baleanu A new iterative method for the numerical solution of high-order non-linear fractional boundary value problems Front. Phys 2020 220

[35] A. Jajarmi, D. Baleanu On the fractional optimal control problems with a general derivative operator Asian J. Control 2021 1062 1071

[36] B. John, T.H. Harris, E.D. Tait, E.H. Wilson, B. Gregg, L.G. Ng, P. Mrass, D.S. Roos, F. Dzierszinski, W. Weninger Dynamic imaging of CD8+ T cells and dendritic cells during infection with Toxoplasma gondii PLoS Pathog 2009 e1000505

[37] J.F. Kelly, H. Sankaranarayanan, M.M. Meerschaert Boundary conditions for two-sided fractional diffusion J. Comput. Phys 2019 1089 1107

[38] J. Klafter and I.M. Sokolov, First steps in random walks: from tools to applications. Oxford University Press (2011).

[39] C. Konradt, N. Ueno, D.A. Christian, J.H. Delong, G.H. Pritchard, J. Herz, D.J. Bzik, A.A. Koshy, D.B. Mcgavern, M.B. Lodoen Endothelial cells are a replicative niche for entry of Toxoplasma gondii to the central nervous system Nat. Microbiol. 2016 1 8

[40] M.F. Krummel, F. Bartumeus, A. Gérard T cell migration, search strategies and mechanisms Nat. Rev. Immunol 2016 193

[41] V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S. Perelson Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis Bull. Math. Biol 1994 295 321

[42] T.A. Landrith, T.H. Harris and E.H. Wilson, Characteristics and critical function of CD8+ T cells inthe Toxoplasma-infected brain, in vol. 37 of Seminars in immunopathology. Springer (2015) 261–270.

[43] H. Li, S. Qi, H. Jin, Z. Qi, Z. Zhang, L. Fu, Q. Luo Zigzag generalized levy walk: the in vivo search strategy of immunocytes Theranostics 2015 1275

[44] M. Lihoreau, T.C. Ings, L. Chittka, A.M. Reynolds Signatures of a globally optimal searching strategy in the three-dimensional foraging flights of bumblebees Sci. Rep. 2016 1 13

[45] C.G. Lüder, M. Giraldo-Velásquez, M. Sendtner, U. Gross Toxoplasma gondii in primary rat CNS cells: differential contribution of neurons, astrocytes, and microglial cells for the intracerebral development and stage differentiation Exp. Parasitol 1999 23 32

[46] B.J. Luft, J.S. Remington Toxoplasmic encephalitis J. Infect. Dis 1988 1 6

[47] R. Mccabe, J. Remington Toxoplasma gondii. Principles and Practice of Infectious Diseases 1990 2090 2103

[48] R. Metzler, J. Klafter The random walk’s guide to anomalous diffusion: a fractional dynamics approach Phys. Rep 2000 1 77

[49] M.J. Miller, S.H. Wei, I. Parker, M.D. Cahalan Two-photon imaging of lymphocyte motility and antigen response in intact lymph node Science 2002 1869 1873

[50] F. Mohammadi, L. Moradi, D. Baleanu, A. Jajarmi A hybrid functions numerical scheme for fractional optimal control problems: application to nonanalytic dynamic systems J. Vibr. Control 2018 5030 5043

[51] E.W. Montroll, G.H. Weiss Random walks on lattices. II J. Math. Phys 1965 167 181

[52] M.E. Moses, J.L. Cannon, D.M. Gordon, S. Forrest Distributed adaptive search in T cells: lessons from ants Front. Immunol. 2019 1357

[53] P. Mrass, S.R. Oruganti, G.M. Fricke, J. Tafoya, J.R. Byrum, L. Yang, S.L. Hamilton, M.J. Miller, M.E. Moses, J.L. Cannon ROCK regulates the intermittent mode of interstitial T cell migration in inflamed lungs Nat. Commun. 2017 1 14

[54] T. Okada, M.J. Miller, I. Parker, M.F. Krummel, M. Neighbors, S.B. Hartley, A. O’Garra, M.D. Cahalan, J.G. Cyster Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells PLoS Biol 2005 e150

[55] A. Okubo and S.A. Levin, Vol. 14 of Diffusion and ecological problems: modern perspectives. Springer Science Business Media (2013).

[56] K. Oldham and J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier (1974).

[57] W.E. Paul, Fundamental immunology. New York (2003).

[58] I. Podlubny, Fractional differential equations, vol. 198 of Mathematics in Science and Engineering. Academic Press, San Diego, Calif, USA (1999).

[59] S. Preston, S. Waters, O. Jensen, P. Heaton, D. Pritchard T-cell motility in the early stages of the immune response modeled as a random walk amongst targets Phys. Rev. E 2006 011910

[60] J.R. Radke, B. Striepen, M.N. Guerini, M.E. Jerome, D.S. Roos, M.W. White Defining the cell cycle for the tachyzoite stage of Toxoplasma gondii Mol. Biochem. Parasitol 2001 165 175

[61] M. Raghib, S.A. Levin, I.G. Kevrekidis Multiscale analysis of collective motion and decision-making in swarms: an advection–diffusion equation with memory approach J. Theor. Biol. 2010 893 913

[62] A.M. Reynolds, M.A. Frye Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search PloS One 2007 e354

[63] A.M. Reynolds, A.D. Smith, R. Menzel, U. Greggers, D.R. Reynolds, J.R. Riley Displaced honey bees perform optimal scale-free search flights Ecology 2007 1955 1961

[64] A.M. Reynolds, A.D. Smith, D.R. Reynolds, N.L. Carreck, J.L. Osborne Honeybees perform optimal scale-free searching flights when attempting to locate a food source J. Exp. Biol 2007 3763 3770

[65] T. Riggs, A. Walts, N. Perry, L. Bickle, J.N. Lynch, A. Myers, J. Flynn, J.J. Linderman, M.J. Miller, D.E. Kirschner A comparison of random vs. chemotaxis-driven contacts of T cells with dendritic cells during repertoire scanning J. Theor. Biol. 2008 732 751

[66] S.S. Sajjadi, D. Baleanu, A. Jajarmi, H.M. Pirouz A new adaptive synchronization and hyperchaos control of a biological snap oscillator Chaos Solitons Fractals 2020 109919

[67] E. Scalas, R. Gorenflo, F. Mainardi Fractional calculus and continuous-time finance Physica A 2000 376 384

[68] D. Schlüter, M. Deckert, H. Hof, K. Frei Toxoplasma gondii infection of neurons induces neuronal cytokine and chemokine production, but gamma interferon-and tumor necrosis factor-stimulated neurons fail to inhibit the invasion and growth of T. gondii. Infect. Immun. 2001 7889 7893

[69] D.W. Sims, E.J. Southall, N.E. Humphries, G.C. Hays, C.J. Bradshaw, J.W. Pitchford, A. James, M.Z. Ahmed, A.S. Brierley, M.A. Hindell Scaling laws of marine predator search behavior Nature 2008 1098 1102

[70] S. Skariah, M.K. Mcintyre, D.G. Mordue Toxoplasma gondii: determinants of tachyzoite to bradyzoite conversion Parasitol. Res. 2010 253 260

[71] A. Sullivan, F. Agusto, S. Bewick, C. Su, S. Lenhart, X. Zhao A mathematical model for within-host Toxoplasma gondii invasion dynamics Math. Biosci. Eng 2012 647

[72] A.M. Sullivan, X. Zhao, Y. Suzuki, E. Ochiai, S. Crutcher, M.A. Gilchrist Evidence for finely-regulated asynchronous growth of Toxoplasma gondii cysts based on data-driven model selection PLoS Comput. Biol 2013 e1003283

[73] Y. Suzuki, X. Wang, B.S. Jortner, L. Payne, Y. Ni, S.A. Michie, B. Xu, T. Kudo, S. Perkins Removal of Toxoplasma gondii cysts from the brain by perforin-mediated activity of CD8+ T cells Am. J. Pathol. 2010 1607 1613

[74] A. Tiwari, R. Hannah, J. Lutshumba, E. Ochiai, L.M. Weiss, Y. Suzuki Penetration of CD8+ cytotoxic T cells into large target, tissue cysts of Toxoplasma gondii, leads to its elimination Am. J. Pathol 2019 1594 1607

[75] E.F. Torrey, R.H. Yolken Toxoplasma gondii and schizophrenia Emerg. Infect. Dis. 2003 1375

[76] V. Vallaeys, R.C. Tyson, W.D. Lane, E. Deleersnijder, E. Hanert A Lévy-flight diffusion model to predict transgenic pollen dispersal J. Royal Soc. Interface 2017 20160889

[77] C. Von Economo, Cellular structure of the human cerebral cortex. Karger Medical and Scientific Publishers (2009).

[78] X. Wang, S.A. Michie, B. Xu, Y. Suzuki Importance of IFN-γ-mediated expression of endothelial VCAM-1 on recruitment of CD8+ T cells into the brain during chronic infection with Toxoplasma gondii J. Interf. Cytokine Res. 2007 329 338

[79] S.H. Wei, I. Parker, M.J. Miller, M.D. Cahalan A stochastic view of lymphocyte motility and trafficking within the lymph node Immunolog. Rev. 2003 136 159

[80] L.M. Weiss and K. Kim, Toxoplasma gondii: the model apicomplexan. Perspectives and methods. Elsevier (2011).

[81] A. Weron and R. Weron, Computer simulation of Lévy α-stable variables and processes, in Chaos–The interplay between stochastic and deterministic behavior. Springer (1995) 379–392.

[82] E.H. Wilson, W. Weninger, C.A. Hunter Trafficking of immune cells in the central nervous system J. Clin. Invest. 2010 1368 1379

[83] C.M. Witt, S. Raychaudhuri, B. Schaefer, A.K. Chakraborty, E.A. Robey Directed migration of positively selected thymocytes visualized in real time PLoS Biol 2005 e160

[84] D. Wodarz, J.P. Christensen, A.R. Thomsen The importance of lytic and nonlytic immune responses in viral infections Trends Immunol 2002 194 200

[85] E.A. Wohlfert, I.J. Blader, E.H. Wilson Brains and brawn: Toxoplasma infections of the central nervous system and skeletal muscle Trends Parasitol. 2017 519 531

Cité par Sources :