Dynamics and control of loop reactors: a review
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 43.

Voir la notice de l'article provenant de la source EDP Sciences

In the loop reactor (LR) the system is composed of several reactor units that are organized in a loop and the feeding takes place at one of several ports with switching of the feed port in a periodic way. In its simplest operation a pulse is formed and rotates around it, producing high temperatures which enable combustion of dilute streams. A limiting model with infinite number of units was derived. Rotating pulses, that are steady in a coordinate moving with the switch velocity, emerge in both asymptotic and discrete models when the ratio of switching to front propagation velocities is around unity. But this behavior exists over a narrow domain of this ratio. Simulations were conducted with generic first order Arrhenius kinetics. Experimental observations of simple frozen rotating pulses are reviewed. Outside the narrow frozen rotating patterns domain the system may exhibit multi- or quasi-periodic operation separated by domains of inactive reaction. The bifurcation set incorporates many ’finger’-like domains of complex frequency-locked solutions that allow to significantly extend the operation domain with higher feed temperature or concentration. Control is necessary to attain stable simple rotating frozen patterns within the narrow domains of active operation. Various control approaches that were suggested, or experimentally applied for this purpose, are reviewed. Actual implementation of combustion in LR will involve several reactants of different ignition temperatures and varying concentration. Design and control should be aimed at producing locked fronts and avoid extinction of the slower reaction.
DOI : 10.1051/mmnp/2021035

Moshe Sheintuch 1 ; Olga Nekhamkina 1

1 Department of Chemical Engineering, Technion - I.I.T., Technion City, Haifa 32 000, Israel.
@article{MMNP_2021_16_a7,
     author = {Moshe Sheintuch and Olga Nekhamkina},
     title = {Dynamics and control of loop reactors: a review},
     journal = {Mathematical modelling of natural phenomena},
     eid = {43},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021035/}
}
TY  - JOUR
AU  - Moshe Sheintuch
AU  - Olga Nekhamkina
TI  - Dynamics and control of loop reactors: a review
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021035/
DO  - 10.1051/mmnp/2021035
LA  - en
ID  - MMNP_2021_16_a7
ER  - 
%0 Journal Article
%A Moshe Sheintuch
%A Olga Nekhamkina
%T Dynamics and control of loop reactors: a review
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021035/
%R 10.1051/mmnp/2021035
%G en
%F MMNP_2021_16_a7
Moshe Sheintuch; Olga Nekhamkina. Dynamics and control of loop reactors: a review. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 43. doi : 10.1051/mmnp/2021035. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021035/

[1] P. Altimari, P.L. Maffettone, S. Crescitelli, L. Russo, E. Mansusi Nonlinear dynamics of a VOC combustion loop reactor AIChE J 2006 2812 2822

[2] P. Altimari, E. Mancusi Control of temperature wave trains in periodically forced networks of catalytic reactors for methanol synthesis Chem. Eng. Proc.: Process Intensif 2013 25 36

[3] P. Altimari, E. Mancusi Control of rotating wave trains in a looped reactor Ind. Eng. Chem. Res 2013 12134 12145

[4] P. Altimari, E. Mancusi, L. Russo, S. Crescitelli Temperature wave-trains of periodically forced networks of catalytic reactors AIChE J 2012 899 913

[5] P. Altimari, E. Mansusi, S. Crescitelli Formation of thermal wave train in loop reactors: Stability limits and spatiotemporal structure for reversible reactions Ind. Eng. Chem. Res 2012 9609 9619

[6] A.A. Barresi, M. Vanni, M. Brinkmann, G. Baldi Control of autothermal networks of nonstationary catalytic reactors AIChE J 1999 1597 602

[7] M. Brinkmann, A.A. Barresi, M. Vanni, G. Baldi Unsteady state treatment of very lean waste gases in a network of catalytic burners Cat. Today 1999 263277

[8] C.B. Broughton, C.G. Gerhold Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets US Patent 2 985 589 1961

[9] A. Burghardt, M. Berezowski, E.W. Jacobsen Approximate characteristics of a moving temperature front in a fixed-bed catalytic reactor Chem. Eng. Proc 1999 19 34

[10] D. Fissore Robust control in presence of parametric uncertainties: observer-based feedback controller design Chem. Eng. Sci 2008 1890 1900

[11] D. Fissore, A.A. Barresi Comparison between the reverse-flow reactor and a network of reactors for the oxidation of lean VOC mixtures Chem. Eng. Tech 2002 421 426

[12] D. Fissore, A.A. Barresi, C.C. Botar-Jid NOx removal in forced unsteady-state chromatographic reactors Chem. Eng. Sci 2006 3409 3414

[13] D. Fissore, R. Pisano, A.A. Barresi Observer design for the selective catalytic reduction of NOx in a loop reactor Chem. Eng. J 2007 181 189

[14] D.A. Frank-Kamenetski, Diffusion and Heat Exchange in Chemical Kinetics. Princeton University Press, Princeton, NJ (1955).

[15] E.J. Gatica, J. Puzhinski, V. Hlavacek Reaction front propagation in nonadiabatic exothermic reaction flow systems AIChE J 1997 819 833

[16] T.N. Haynes, H.S. Caram The simulated moving bed chemical reactor Chem. Eng. Sci 1994 5465 5472

[17] M.A.G. Hevia, D. Fissore, S. Ordóñez, F.V. Díez, A.A. Barresi Combustion of medium concentration CH4-air mixtures in non-stationary reactors Chem. Eng. J 2007 343 349

[18] O.V. Kiselev, Theoretical Study of the Phenomena of Heat Waves Movement in Catalytic Bed. (in Russian). Russian Academy of Sciences, Institute of Catalysis (1993).

[19] G. Kolios, J. Frauhammer, G. Eigenberger Autothermal fixed-bed reactors concepts Chem. Eng. Sci 2000 5945 5967

[20] G. Lauschke, E.D. Gilles Circulation reaction zones in a packed-bed loop reactors Chem. Eng. Sci 1994 5359 5375

[21] A.Y. Madai, O. Nekhamkina, M. Sheintuch What is the leanest stream to sustain a nonadiabatic loop reactor: analysis and methane combustion experiments AIChE J 2017 2030 2042

[22] A.Y. Madai, M. Sheintuch Demonstration of loop reactor operation AIChE J 2008 2413 2422

[23] A.Y. Madai, M. Sheintuch Optimal design and control of nonadiabatic loop reactors Chem. Eng. Sci 2010 107 113

[24] E. Mancusi, L. Russo, P. Altimari, P.L. Maffettone, S. Crescitelli Effect of the switch strategy on the stability of reactor networks Ind. Eng. Chem. Res 2007 6510 6521

[25] E. Mancusi, P. Altimari, P. L. Maffettone, S. Crescitelli, L. Russo Temperature and conversion patterns in a network of catalytic reactors for methanol synthesis with different switch strategies CES 2010 4579 4590

[26] P. Marin, D. Fissore, A.A. Barresi, S. Ordonez Simulation of an industrial-scale process for the SCR of NOx based on the loop reactor concept Chem. Eng. Proc 2009 311 320

[27] Y.S. Matros, Catalytic Process Under Unsteady-State Conditions. Elsevier, Amsterdam (1989).

[28] Y.S. Matros, G.A. Bunimovich, V.O. Strots, E.A. Mirosh Reversed flow converter for emission control after automotive engines Chem. Eng. Sci 1999 2889 2898

[29] O. Nekhamkina, A.Y. Madai, M. Sheintuch Front separation and ’locking’ during hydrocarbons co-combustion in a loop reactor Chem. Eng. J 2017 618 632

[30] O.A. Nekhamkina, A.A. Nepomnyashchy, B.Y. Rubinstein, M. Sheintuch Nonlinear analysis of stationary patterns in convection-reaction-diffusion systems Phys. Rev. E 2000 2436 2444

[31] O. Nekhamkina, M. Sheintuch Structure of operation domains of loop reactors AIChE J 2008 1292 1302

[32] O. Nekhamkina, M. Sheintuch Approximate design of loop reactors Chem. Eng. Sci 2008 4924 4934

[33] O. Nekhamkina, M. Sheintuch Cross-flow reactor design for Fischer Tropsch synthesis Chem. Eng. J 2019 277 293

[34] L. Russo, P. Altimari, E. Mancusi, P.L. Maffettone, S. Crescitelli Complex dynamics and spatiotemporal patterns in a network of three distributed chemical reactors with periodical feed switching Chaos Solit. Fract 2006 682706

[35] R. Sheinman, M. Sheintuch Loop reactor design and control for reversible exothermic reactions Ind. Eng. Chem. Res 2009 5185 5192

[36] M. Sheintuch, O. Nekhamkina Comparison of flow-reversal, internal-recirculation and loop reactors Chem. Eng. J 2004 4065 4072

[37] M. Sheintuch, O. Nekhamkina The asymptotes of loop reactors AIChE J 2005 224 234

[38] Y. Smagina, M. Sheintuch Control of rotating pulses in a loop reactor J. Process Control 2009 954 963

[39] Y. Smagina, M. Sheintuch Control of traveling solutions in a loop-reactor Math. Model. Nat. Phenom 2011 209 225

[40] S.A. Velardi, A.A. Barresi Methanol synthesis in a forced .unsteady state reactor network Chem. Eng. Sci 2002 2995 3004

[41] A.I. Volpert, V.I. Volpert and V.I. Volpert, Traveling wave solutions of parabolic systems. AMS (1994).

[42] J. Wolff, A.G. Papathanasiou, I.G. Kevrekidis, H.H. Rotermund, G. Ertl Spatiotemporal addressing of surface activity Science 2001 134 137

[43] J. Wolff, A.G. Papathanasiou, H.H. Rotermund, G. Ertl, X. Li, I.G. Kevrekidis Gentle dragging of reaction waves Phys. Rev. Lett 2003 018302

[44] V.Z. Yakhnin, A.B. Rovinsky, M. Menzinger Differential flow instability of the exothermic standard reaction in a tubular cross-flow reactor Chem. Eng. Sci 1994 3257 3262

[45] V.M. Zahn, M. Mangold, M. Krasnyk, A. Seidel-Morgenstern Theoretical analysis of heat integration in a periodically operated cascade of catalytic fixed-bed reactors Chem. Eng. Tech 2009 1326 1338

[46] V.M. Zahn, M. Mangold, A. Seidel-Morgenstern Autothermal operation of an adiabatic simulated counter current reactor Chem. Eng. Sci 2010 458 465

[47] V.M. Zahn, C.U. Yi, A.S. Morgenstern Analysis and demonstration of a control concept for a heat integrated simulated moving bed reactor Chem. Eng. Sci 2011 4901 12

[48] Y.B. Zeldovich, G.I. Barenblatt, V.B. Librovich and G.M. Makhviladze, Mathematical theory of combustion and explosions. US Springer (1985).

Cité par Sources :