Reproduction number for an age of infection structured model
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 42.

Voir la notice de l'article provenant de la source EDP Sciences

We study the basic reproduction number (R0) in an epidemic model where infected individuals are initially asymptomatic and structured by the time since infection. At the beginning of an epidemic outbreak the computation of R0 relies on limited data based mostly on symptomatic cases, since asymptomatic infected individuals are not detected by the surveillance system. R0 has been widely used as an indicator to assess the dissemination of infectious diseases. Asymptomatic individuals are assumed to either become symptomatic after a fixed period of time or they are removed (recovery or disease-related death). We determine R0 understood as the expected secondary symptomatic cases produced by a symptomatic primary case through a chain of asymptomatic infections. R0 is computed directly by interpreting the model ingredients and also using a more systematic approach based on the next-generation operator. Reported Covid-19 cases data during the first wave of the pandemic in Spain are used to fit the model and obtain both values of R0 before and after the severe lockdown imposed in March 2020. The results confirm that SARS-CoV-2 was expanding within the population before the lockdown whereas the virus spreading was controlled two weeks after the lockdown.In memoriam Carles Perelló, emeritus professor at UAB, recently deceased and scientific father/grandfather of the authors.
DOI : 10.1051/mmnp/2021033

Carles Barril 1 ; Àngel Calsina 1, 2 ; Sílvia Cuadrado 1 ; Jordi Ripoll 3

1 Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
2 Centre de Recerca Matemàtica, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain.
3 Departament d’Informàtica, Matemàtica Aplicada i Estadística, Universitat de Girona.
@article{MMNP_2021_16_a33,
     author = {Carles Barril and \`Angel Calsina and S{\'\i}lvia Cuadrado and Jordi Ripoll},
     title = {Reproduction number for an age of infection structured model},
     journal = {Mathematical modelling of natural phenomena},
     eid = {42},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021033/}
}
TY  - JOUR
AU  - Carles Barril
AU  - Àngel Calsina
AU  - Sílvia Cuadrado
AU  - Jordi Ripoll
TI  - Reproduction number for an age of infection structured model
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021033/
DO  - 10.1051/mmnp/2021033
LA  - en
ID  - MMNP_2021_16_a33
ER  - 
%0 Journal Article
%A Carles Barril
%A Àngel Calsina
%A Sílvia Cuadrado
%A Jordi Ripoll
%T Reproduction number for an age of infection structured model
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021033/
%R 10.1051/mmnp/2021033
%G en
%F MMNP_2021_16_a33
Carles Barril; Àngel Calsina; Sílvia Cuadrado; Jordi Ripoll. Reproduction number for an age of infection structured model. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 42. doi : 10.1051/mmnp/2021033. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021033/

[1] J. Arino, S. Portet A simple model for COVID-19 Infect. Disease Model 2020 309 315

[2] J. Arino, F. Brauer, P. Van Den Driessche, J. Watmough, J. Wu A model for influenza with vaccination and antiviral treatment J. Theor. Biol. 2008 118 130

[3] C. Barril, À. Calsina, J. Ripoll A practical approach to R0 in continuous-time ecological models Math. Methods Appl. Sci 2017 8432 8445

[4] C. Barril, À. Calsina, J. Ripoll On the reproduction number of a gut microbiota model Bull. Math. Biol 2017 2727 2746

[5] C. Barril, À. Calsina, S. Cuadrado, J. Ripoll On the basic reproduction number in continuously structured populations Math. Methods Appl. Sci 2021 799 812

[6] D. Breda, F. Florian, J. Ripoll, R. Vermiglio Efficient numerical computation of the basic reproduction number for structured populations J. Comput. Appl. Math 2021 113165

[7] R.H. Chisholm, P.T. Campbell, Y. Wu, S.Y.C. Tong, J. Mcvernon, N. Geard Implications of asymptomatic carriers for infectious disease transmission and control Royal Soc. Open Sci 2018 172341

[8] K.L. Cooke Models for endemic infections with asymptomatic cases. I. One group Math. Model. 1982 1 15

[9] J.M. Cushing, O. Diekmann The many guises of R0 (a didactic note) J. Theor. Biol 2016 295 302

[10] O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations J. Math. Biol 1990 365 382

[11] K-J. Engel and R. Nagel, A short course on operator semigroups. Springer (2006).

[12] J.A.P. Heesterbeek A brief history of R0 and a recipe for its calculation Acta Biotheor 2002 189 204

[13] H. Inaba, H. Nishiura The state-reproduction -number for a multistate class age structured epidemic system and its application to the asymptomatic transmission model Math. Biosci 2008 77 89

[14] H. Inaba, Age-structured population dynamics in demography and epidemiology. Springer, Singapore (2017).

[15] W.O. Kermack, A.G. Mckendrick A contribution to the mathematical theory of epidemics Proc. Royal Soc. Lond 1927 700 721

[16] Z. Liu, P. Magal, O. Seydi, G. Webb A COVID-19 epidemic model with latency period Infect. Disease Model 2020 323 337

[17] D. Ludwig, C.J. Walters Are age-structured models appropriate for catch-effort data? Can. J. Fish. Aquat. Sci. 1985 1066 1072

[18] D.P. Oran, E.J. Topol Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review Ann. Intern. Med 2020 362 365

[19] J. Qin, C. You, Q. Lin, T. Hu, S. Yu, X-H. Zhou Estimation of incubation period distribution of COVID-19 using disease onset forward time: a novel cross-sectional and forward follow-up study Sci. Adv 2020 eabc1202

[20] H. Thieme Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity SIAM J. Appl. Math 2009 188 211

Cité par Sources :