Carles Barril 1 ; Àngel Calsina 1, 2 ; Sílvia Cuadrado 1 ; Jordi Ripoll 3
@article{10_1051_mmnp_2021033,
author = {Carles Barril and \`Angel Calsina and S{\'\i}lvia Cuadrado and Jordi Ripoll},
title = {Reproduction number for an age of infection structured model},
journal = {Mathematical modelling of natural phenomena},
eid = {42},
year = {2021},
volume = {16},
doi = {10.1051/mmnp/2021033},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021033/}
}
TY - JOUR AU - Carles Barril AU - Àngel Calsina AU - Sílvia Cuadrado AU - Jordi Ripoll TI - Reproduction number for an age of infection structured model JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021033/ DO - 10.1051/mmnp/2021033 LA - en ID - 10_1051_mmnp_2021033 ER -
%0 Journal Article %A Carles Barril %A Àngel Calsina %A Sílvia Cuadrado %A Jordi Ripoll %T Reproduction number for an age of infection structured model %J Mathematical modelling of natural phenomena %D 2021 %V 16 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021033/ %R 10.1051/mmnp/2021033 %G en %F 10_1051_mmnp_2021033
Carles Barril; Àngel Calsina; Sílvia Cuadrado; Jordi Ripoll. Reproduction number for an age of infection structured model. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 42. doi: 10.1051/mmnp/2021033
[1] , A simple model for COVID-19 Infect. Disease Model 2020 309 315
[2] , , , , A model for influenza with vaccination and antiviral treatment J. Theor. Biol. 2008 118 130
[3] , , A practical approach to R0 in continuous-time ecological models Math. Methods Appl. Sci 2017 8432 8445
[4] , , On the reproduction number of a gut microbiota model Bull. Math. Biol 2017 2727 2746
[5] , , , On the basic reproduction number in continuously structured populations Math. Methods Appl. Sci 2021 799 812
[6] , , , Efficient numerical computation of the basic reproduction number for structured populations J. Comput. Appl. Math 2021 113165
[7] , , , , , Implications of asymptomatic carriers for infectious disease transmission and control Royal Soc. Open Sci 2018 172341
[8] Models for endemic infections with asymptomatic cases. I. One group Math. Model. 1982 1 15
[9] , The many guises of R0 (a didactic note) J. Theor. Biol 2016 295 302
[10] , , On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations J. Math. Biol 1990 365 382
[11] K-J. Engel and R. Nagel, A short course on operator semigroups. Springer (2006).
[12] A brief history of R0 and a recipe for its calculation Acta Biotheor 2002 189 204
[13] , The state-reproduction -number for a multistate class age structured epidemic system and its application to the asymptomatic transmission model Math. Biosci 2008 77 89
[14] H. Inaba, Age-structured population dynamics in demography and epidemiology. Springer, Singapore (2017).
[15] , A contribution to the mathematical theory of epidemics Proc. Royal Soc. Lond 1927 700 721
[16] , , , A COVID-19 epidemic model with latency period Infect. Disease Model 2020 323 337
[17] , Are age-structured models appropriate for catch-effort data? Can. J. Fish. Aquat. Sci. 1985 1066 1072
[18] , Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review Ann. Intern. Med 2020 362 365
[19] , , , , , Estimation of incubation period distribution of COVID-19 using disease onset forward time: a novel cross-sectional and forward follow-up study Sci. Adv 2020 eabc1202
[20] Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity SIAM J. Appl. Math 2009 188 211
Cité par Sources :