Voir la notice de l'article provenant de la source EDP Sciences
Carles Barril 1 ; Àngel Calsina 1, 2 ; Sílvia Cuadrado 1 ; Jordi Ripoll 3
@article{MMNP_2021_16_a33, author = {Carles Barril and \`Angel Calsina and S{\'\i}lvia Cuadrado and Jordi Ripoll}, title = {Reproduction number for an age of infection structured model}, journal = {Mathematical modelling of natural phenomena}, eid = {42}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021033}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021033/} }
TY - JOUR AU - Carles Barril AU - Àngel Calsina AU - Sílvia Cuadrado AU - Jordi Ripoll TI - Reproduction number for an age of infection structured model JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021033/ DO - 10.1051/mmnp/2021033 LA - en ID - MMNP_2021_16_a33 ER -
%0 Journal Article %A Carles Barril %A Àngel Calsina %A Sílvia Cuadrado %A Jordi Ripoll %T Reproduction number for an age of infection structured model %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021033/ %R 10.1051/mmnp/2021033 %G en %F MMNP_2021_16_a33
Carles Barril; Àngel Calsina; Sílvia Cuadrado; Jordi Ripoll. Reproduction number for an age of infection structured model. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 42. doi : 10.1051/mmnp/2021033. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021033/
[1] A simple model for COVID-19 Infect. Disease Model 2020 309 315
,[2] A model for influenza with vaccination and antiviral treatment J. Theor. Biol. 2008 118 130
, , , ,[3] A practical approach to R0 in continuous-time ecological models Math. Methods Appl. Sci 2017 8432 8445
, ,[4] On the reproduction number of a gut microbiota model Bull. Math. Biol 2017 2727 2746
, ,[5] On the basic reproduction number in continuously structured populations Math. Methods Appl. Sci 2021 799 812
, , ,[6] Efficient numerical computation of the basic reproduction number for structured populations J. Comput. Appl. Math 2021 113165
, , ,[7] Implications of asymptomatic carriers for infectious disease transmission and control Royal Soc. Open Sci 2018 172341
, , , , ,[8] Models for endemic infections with asymptomatic cases. I. One group Math. Model. 1982 1 15
[9] The many guises of R0 (a didactic note) J. Theor. Biol 2016 295 302
,[10] On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations J. Math. Biol 1990 365 382
, ,[11] K-J. Engel and R. Nagel, A short course on operator semigroups. Springer (2006).
[12] A brief history of R0 and a recipe for its calculation Acta Biotheor 2002 189 204
[13] The state-reproduction -number for a multistate class age structured epidemic system and its application to the asymptomatic transmission model Math. Biosci 2008 77 89
,[14] H. Inaba, Age-structured population dynamics in demography and epidemiology. Springer, Singapore (2017).
[15] A contribution to the mathematical theory of epidemics Proc. Royal Soc. Lond 1927 700 721
,[16] A COVID-19 epidemic model with latency period Infect. Disease Model 2020 323 337
, , ,[17] Are age-structured models appropriate for catch-effort data? Can. J. Fish. Aquat. Sci. 1985 1066 1072
,[18] Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review Ann. Intern. Med 2020 362 365
,[19] Estimation of incubation period distribution of COVID-19 using disease onset forward time: a novel cross-sectional and forward follow-up study Sci. Adv 2020 eabc1202
, , , , ,[20] Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity SIAM J. Appl. Math 2009 188 211
Cité par Sources :