Voir la notice de l'article provenant de la source EDP Sciences
Sunil Kumar 1, 2 ; R.P. Chauhan 1 ; Jagdev Singh 3 ; Devendra Kumar 4
@article{MMNP_2021_16_a20, author = {Sunil Kumar and R.P. Chauhan and Jagdev Singh and Devendra Kumar}, title = {A computational study of transmission dynamics for dengue fever with a fractional approach}, journal = {Mathematical modelling of natural phenomena}, eid = {48}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021032}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021032/} }
TY - JOUR AU - Sunil Kumar AU - R.P. Chauhan AU - Jagdev Singh AU - Devendra Kumar TI - A computational study of transmission dynamics for dengue fever with a fractional approach JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021032/ DO - 10.1051/mmnp/2021032 LA - en ID - MMNP_2021_16_a20 ER -
%0 Journal Article %A Sunil Kumar %A R.P. Chauhan %A Jagdev Singh %A Devendra Kumar %T A computational study of transmission dynamics for dengue fever with a fractional approach %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021032/ %R 10.1051/mmnp/2021032 %G en %F MMNP_2021_16_a20
Sunil Kumar; R.P. Chauhan; Jagdev Singh; Devendra Kumar. A computational study of transmission dynamics for dengue fever with a fractional approach. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 48. doi : 10.1051/mmnp/2021032. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021032/
[1] Fractional differential equations involving generalized derivative with Stieltjes and fractional integral boundary conditions Appl. Math. Lett 2018 111 117
, , ,[2] Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel Adv. Differ. Equ 2017 315
,[3] A mathematical theoretical study of a particular system of Caputo–Fabrizio fractionaldifferential equations for the Rubella disease model Adv. Differ. Equ 2020 1 19
, ,[4] Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations Chaos Solitons Fract 2017 99 105
, ,[5] On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method Open Math 2015 547 556
,[6] Taylor’s formula involving generalized fractional derivatives Appl. Math. Comput 2018 182 195
[7] A new dissipation model based on memory mechanism Pure Appl. Geophys 1971 134 147
,[8] Sir model for dengue disease with effect of dengue vaccination Comput. Math. Methods Med 2018 9861572
, ,[9] A model of dengue fever BioMedical Eng. OnLine 2003 4
, ,[10] A predictor-corrector approach for the numerical solution of fractional differential equations Nonlinear Dyn 2002 3 22
, ,[11] The fractional-order SIS epidemic model with variable population size J. Egypt. Math. Soc 2014 50 54
[12] Black–Scholes option pricing equations described by the Caputo generalized fractional derivative Chaos Solitons Fract 2019 108 118
, ,[13] Competitive exclusion in a vector-host model for the dengue fever J. Math. Biol 1997 523 544
,[14] Chaos and multiple attractors in a fractal–fractional Shinriki’s oscillator model Physica A 2020 122918
[15] Chaos in a cancer model via fractional derivatives with exponential decay and Mittag-Leffler law Entropy 2017 681
, , , ,[16] Analytical solutions of the electrical RLC circuit via Liouville–Caputo operators with local and non-local kernels Entropy 2016 402
, , , , ,[17] On the generalized fractional derivatives and their Caputo modification J. Nonlinear Sci. Appl 2017 2607 2619
, ,[18] New approach to a generalized fractional integral Appl. Math. Comput 2011 860 865
[19] A new approach to generalized fractional derivatives Bull. Math. Anal. Appl 2014 1 15
[20] U.N. Katugampola, Existence and uniqueness results for a class of generalized fractional differential equations. Preprint arXiv:1411.5229 (2016).
[21] M. Khalid, M. Sultana and F.S. Khan, Numerical solution of SIR model of dengue fever. Int. J. Comput. Appl. 118 (21).
[22] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Vol. 204 of Theory and applications of fractional differential equations. Elsevier Science Limited (2006).
[23] A new approach for nuclear family model with fractional order Caputo derivative Appl. Math. Nonlinear Sci 2020 393 404
,[24] A new fractional modeling arising in engineering sciences and its analytical approximate solution Alexandria Eng. J 2013 813 819
[25] A study of fractional Lotka-Volterra population model using Haar wavelet and Adams-Bashforth-Moulton methods Math. Methods Appl. Sci 2020 5564 5578
, , ,[26] A new Rabotnov fractional-exponential function-based fractional derivative for diffusion equation under external force Math. Methods Appl. Sci 2020 4460 4471
, , , ,[27] A modified analytical approach with existence and uniqueness for fractional Cauchy reaction–diffusion equations Adv. Differ. Equ 2020 1 18
, , , ,[28] A nonlinear fractional model to describe the population dynamics of two interacting species Math. Methods Appl. Sci 2017 4134 4148
, ,[29] On riemann-liouville and caputo derivatives Discrete Dyn. Nature Soc 2011
, ,[30] Numerical simulation of initial value problems with generalized Caputo-type fractional derivatives Appl. Numer. Math 2020 94 105
,[31] Kinetic model for drying in frame of generalized fractional derivatives Fractal Fract 2020 17
,[32] I. Podlubny, Vol. 198 of Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier (1998).
[33] Numerical analytic solution of SIR model of dengue fever disease in south Sulawesi using homotopy perturbation method and variational iteration method J. Math. Fund. Sci 2014 91 105
, ,[34] On a nonlinear fractional order model of dengue fever disease under Caputo-Fabrizio derivative Alexandria Eng. J 2020 2305 2313
, ,[35] Transmission dynamics of fractional order typhoid fever model using Caputo–Fabrizio operator Chaos Solitons Fract 2019 355 365
,[36] Y. Shen, Mathematical models of dengue fever and measures to control it, Ph.D. dissertation, Florida State University Libraries (2014).
[37] A sir model for spread of dengue fever disease (simulation for south Sulawesi, Indonesia and Selangor, Malaysia) World J. Model. Simul 2013 96 105
,[38] A new fractional model for giving up smoking dynamics Adv. Differ. Equ 2017 88
, , ,[39] A fractional epidemiological model for computer viruses pertaining to a new fractional derivative Appl. Math. Comput 2018 504 515
, , ,[40] A new fractional model for the dynamics of the hepatitis B virus using the Caputo-Fabrizio derivative Eur. Phys. J. Plus 2018 237
, ,Cité par Sources :