Tatyana Lyubimova 1, 2 ; Andrey Ivantsov 1, 2 ; Dmitry Lyubimov 2
@article{10_1051_mmnp_2021031,
author = {Tatyana Lyubimova and Andrey Ivantsov and Dmitry Lyubimov},
title = {Control of fingering instability by vibrations},
journal = {Mathematical modelling of natural phenomena},
eid = {40},
year = {2021},
volume = {16},
doi = {10.1051/mmnp/2021031},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021031/}
}
TY - JOUR AU - Tatyana Lyubimova AU - Andrey Ivantsov AU - Dmitry Lyubimov TI - Control of fingering instability by vibrations JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021031/ DO - 10.1051/mmnp/2021031 LA - en ID - 10_1051_mmnp_2021031 ER -
%0 Journal Article %A Tatyana Lyubimova %A Andrey Ivantsov %A Dmitry Lyubimov %T Control of fingering instability by vibrations %J Mathematical modelling of natural phenomena %D 2021 %V 16 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021031/ %R 10.1051/mmnp/2021031 %G en %F 10_1051_mmnp_2021031
Tatyana Lyubimova; Andrey Ivantsov; Dmitry Lyubimov. Control of fingering instability by vibrations. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 40. doi: 10.1051/mmnp/2021031
[1] , , Imbibition in disordered media Adv. Phys 2004 83 175
[2] G.I. Barenblatt, V.M. Entov and V.M. Ryzhik, Theory of Fluid Flows Through Natural Rocks. Springer, Netherlands (1990).
[3] , Stability of CO2–brine immiscible displacement Int. J. Greenhouse Gas Control 2012 188 203
[4] , , A continuum method for modeling surface tension J. Comput. Phys 1992 335 354
[5] , , , , The dynamics of mid-ocean ridge hydrothermal systems: splitting plumes and fluctuating vent temperatures Earth Planet. Sci. Lett 2006 218 231
[6] , Nonlocal interface dynamics and pattern formation in gravity-driven unsaturated flow through porous media Phys. Rev. Lett 2008
[7] , , Pore-network simulation of unstable miscible displacements in porous media Transp. Porous Media 2016 511 529
[8] , Dynamics of a liquid drop in porous medium saturated by another liquid under gravity J. Phys.: Conf. Ser 2016 012040
[9] , Analysis of fundamentals of two-phase flow in porous media using dynamic pore-network models: a review Crit. Rev. Environ. Sci. Technol 2012 1895 1976
[10] Enhanced oil recovery 1989
[11] , Instability of the motion of a drop in filtration flows Fluid Dyn 2005 777 784
[12] , , , Instability of a drop moving in a brinkman porous medium Phys. Fluids 2009 014105
[13] , On a straight-through method of calculation for problems with deformable interface Model. Mech 1990 136 140
[14] , Effect of vibration on the stability of a plane displacement front in a porous medium Fluid Dyn 2006 3 11
[15] , , , , PARAMESH: a parallel adaptive mesh refinement community toolkit Comput. Phys. Commun 2000 330 354
[16] , Convection in Porous Media Convection in Porous Media 2017
[17] , Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations J. Comput. Phys 1988 12 49
[18] , , , , , , , Suppressing viscous fingering in structured porous media Proc. Natl. Acad. Sci 2018 4833 4838
[19] , , a generalized minimal residual algorithm for solving nonsymmetric linear systems SIAM J. Sci. Stat. Comput. 1986 856 869
[20] M. Sahimi, Flow and Transport in Porous Media and Fractured Rock. Wiley-VCH Verlag GmbH Co. KGaA (2011).
[21] , , , , Control of radial miscible viscous fingering J. Fluid Mech 2020 A16
[22] , , A level set approach for computing solutions to incompressible two-phase flow J. Comput. Phys 1994 146 159
[23] , , Stabilizing fluid-fluid displacements in porous media through wettability alteration Phys. Rev. Appl 2015
[24] Fundamental models for fuel cell engineering ChemInform 2004
Cité par Sources :