Dynamics of a Vector-Borne model with direct transmission and age of infection
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 28.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper we the study of dynamics of time since infection structured vector born model with the direct transmission. We use standard incidence term to model the new infections. We analyze the corresponding system of partial differential equation and obtain an explicit formula for the basic reproduction number ℜ0. The diseases-free equilibrium is locally and globally asymptotically stable whenever the basic reproduction number is less than one, ℜ0 1. Endemic equilibrium exists and is locally asymptotically stable when ℜ0 > 1. The disease will persist at the endemic equilibrium whenever the basic reproduction number is greater than one.
DOI : 10.1051/mmnp/2021019

Necibe Tuncer 1 ; Sunil Giri 1

1 Department of Mathematical Sciences, Florida Atlantic University, Science Building, 777 Glades Road, Boca Raton, FL 33431, USA.
@article{MMNP_2021_16_a30,
     author = {Necibe Tuncer and Sunil Giri},
     title = {Dynamics of a {Vector-Borne} model with direct transmission and age of infection},
     journal = {Mathematical modelling of natural phenomena},
     eid = {28},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021019/}
}
TY  - JOUR
AU  - Necibe Tuncer
AU  - Sunil Giri
TI  - Dynamics of a Vector-Borne model with direct transmission and age of infection
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021019/
DO  - 10.1051/mmnp/2021019
LA  - en
ID  - MMNP_2021_16_a30
ER  - 
%0 Journal Article
%A Necibe Tuncer
%A Sunil Giri
%T Dynamics of a Vector-Borne model with direct transmission and age of infection
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021019/
%R 10.1051/mmnp/2021019
%G en
%F MMNP_2021_16_a30
Necibe Tuncer; Sunil Giri. Dynamics of a Vector-Borne model with direct transmission and age of infection. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 28. doi : 10.1051/mmnp/2021019. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021019/

[1] F.B. Agusto, S. Bewick, W.F. Fagan Mathematical model for Zika virus dynamics with sexual transmission route Ecol. Complex 2017 61 81

[2] E. Bonyah, K.O. Okosun Mathematical modeling of Zika virus Asian Pacific J. Trop. Dis 2016 673 679

[3] L. Cai, X. Li, N. Tuncer, M. Martcheva, A.A. Lashari Optimal control of a malaria model with asymptomatic class and superinfection Math. Biosci 2017 94 108

[4] Canada reports 1st sexually transmitted Zika case, 9th country to report person-to-person transmission. April (2020). Available from: http://www.outbreaknewstoday.com/canada-reports-1st-sexually-transmitted-zika-case-9th-country-to-report-person-to-person-transmission-88047/.

[5] Centers for Disease Control and Prevention and others. CDC Concludes Zika Causes Microcephaly and Other Birth Defects: Centers for Disease Control and Prevention (CDC) (2016).

[6] T. Chouin-Carneiro, A. Vega-Rua, M. Vazeille, A. Yebakima, R. Girod, D. Goindin, M. Dupont-Rouzeyrol, R. Lourenco-De-Oliveira, A.B. Failloux Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus PLoS Neglect. Trop. Dis 2016 e0004543

[7] C. Ding, N. Tao, Y. Zhu A mathematical model of Zika virus and its optimal control In 2016 35th Chinese control conference (CCC) 2016 2642 2645

[8] D.M. Dudley, C.M. Newman, J. Lalli, L.M. Stewart, M.R. Koenig, A.M. Weiler, M.R. Semler, G.L. Barry, K.R. Zarbock, M.S. Mohns, M.E. Breitbach Infection via mosquito bite alters Zika virus tissue tropism and replication kinetics in rhesus macaques Nat. Commun 2017 1 11

[9] D.M. Dudley, M.T. Aliota, E.L. Mohr, A.M. Weiler, G. Lehrer-Brey, K.L. Weisgrau, M.S. Mohns, M.E. Breitbach, M.N. Rasheed, C.M. Newman, D.D. Gellerup A rhesus macaque model of Asian-lineage Zika virus infection Nat. Commun 2016 1 9

[10] B.D. Foy, K.C. Kobylinski, J.L.C. Foy, B.J. Blitvich, A.T. Da Rosa, A.D. Haddow, R.S. Lanciotti, R.B. Tesh Probable non–vector-borne transmission of Zika virus, Colorado, USA Emerg. Infect. Dis. 2011 880

[11] D. Gao, Y. Lou, D. He, T.C. Porco, Y. Kuang, G. Chowell, S. Ruan Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis Sci. Rep 2016 28070

[12] G. Grard, M. Caron, I.M. Mombo, D. Nkoghe, S.M. Ondo, D. Jiolle, D. Fontenille, C. Paupy, E.M. Leroy Zika virus in Gabon (Central Africa)–2007: a new threat from Aedes albopictus? PLoS Neglect. Trop. Dis. 2014 e2681

[13] J. Hale Asymptotic behavior of dissipative systems AMS, Providence 1988

[14] Health Effects and Risks. CDC, April (2020). Available from: http://www.cdc.gov/zika/healtheffects.

[15] A.J. Kucharski, S. Funk, R.M. Eggo, H.P. Mallet, W.J. Edmunds, E.J. Nilles Transmission dynamics of Zika virus in island populations: a modelling analysis of the 2013–14 French Polynesia outbreak PLoS Neglect. Trop. Dis 2016

[16] P. Magal Compact attractors for time-periodic age-structured population models Electr. J. Differ. Equ 2001 1 35

[17] P. Magal and S. Ruan, Theory and Applications of Abstract Semilinear Cauchy Problems. Springer (2018).

[18] P. Magal, C.C. Mccluskey, G.F. Webb Lyapunov functional and global asymptotic stability for an infection-age model Applicable Analysis 2010 1109 1140

[19] R.W. Malone, J. Homan, M.V. Callahan, J. Glasspool-Malone, L. Damodaran, A.D.B. Schneider, R. Zimler, J. Talton, R.R. Cobb, I. Ruzic, J. Smith-Gagen Zika virus: medical countermeasure development challenges PLoS Neglect. Trop. Dis 2016

[20] M. Martcheva, H.R. Thieme Progression age enhanced backward bifurcation in an epidemic model with super-infection J. Math. Biol 2003 385 424

[21] M. Martcheva, An introduction to mathematical epidemiology. Springer (2015) 61.

[22] M.Z. Mehrjardi Is Zika virus an emerging TORCH agent? An invited commentary Virology 2017

[23] D. Musso, C. Roche, E. Robin, T. Nhan, A. Teissier, V.M. Cao-Lormeau Potential sexual transmission of Zika virus Emerg. Infect. Dis 2015 359

[24] F. Noorbakhsh, K. Abdolmohammadi, Y. Fatahi, H. Dalili, M. Rasoolinejad, F. Rezaei, M. Salehi-Vaziri, N.Z. Shafiei-Jandaghi, E.S. Gooshki, M. Zaim, M.H. Nicknam Zika virus infection, basic and clinical aspects: A review article Iran. J. Public Health 2018 20

[25] A.R. Plourde, E.M. Bloch Evan: a literature review of Zika virus Emerg. Infect. Dis 2016 1185

[26] G.A. Poland, R.B. Kennedy, I.G. Ovsyannikova, R. Palacios, P.L. Ho, J. Kalil Development of vaccines against Zika virus Lancet Infect. Dis 2018 e211 e219

[27] Z. Qiu, Q. Kong, X. Li, M. Martcheva The vector–host epidemic model with multiple strains in a patchy environment J. Math. Anal. Appl 2013 12 36

[28] M. Rahman, K. Bekele-Maxwell, L.L. Cates, H.T. Banks, N.K. Vaidya Modeling Zika virus transmission dynamics: parameter estimates, disease characteristics, and prevention Sci. Rep 2019 1 13

[29] S.A. Rasmussen, D.J. Jamieson, M.A. Honein, L.R. Petersen Zika virus and birth defects?reviewing the evidence for causality N. Engl. J. Med 2016 1981 1987

[30] Sexual Transmission and Prevention, CDC, April (2020). Available from: http://www.cdc.gov/zika/prevention/sexual-transmission-prevention.html.

[31] H. Smith and H.R. Thieme, Dynamical Systems and Population Persistence. Vol. 118 of Graduate Studies in Mathematics. American Mathematical Society, Rhode Island (2011).

[32] H.R. Thieme, Mathematics in Population Biology. Princeton University Press (2003).

[33] H.R. Thieme Uniform persistence and permanence for non-autonomous semiflows in population biology Math. Biosci 2000 173 201

[34] H.R. Thieme Semiflows generated by Lipschitz perturbations of non-densely defined operators Differ. Integr. Equ 1990 1035 1066

[35] S. Towers, F. Brauer, C. Castillo-Chavez, A.K.I. Falconar, A. Mubayi, C.M.E. Romero-Vivasc Estimate of the reproduction number ofthe 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of the relative role of sexual transmission Epidemics 2016 50 55

[36] Treatment. CDC, April (2020). Available from: http://www.cdc.gov/zika/symptoms/treatment.html.

[37] N. Tuncer, C. Mohanakumar, S. Swanson, M. Martcheva Efficacy of control measures in the control of Ebola, Liberia 2014–2015 J. Biol. Dyn. 2018 913 937

[38] N. Tuncer, M. Marctheva, B. Labarre, S. Payoute Structural and practical identifiability analysis of Zika epidemiological models Bull. Math. Biol 2018 2209 2241

[39] J. Tumwiine, J.Y.T. Mugisha, L.S. Luboobi A mathematical model for the dynamics of malaria in a human host and mosquito vector with temporary immunity Appl. Math. Comput 2007 1953 1965

[40] N. Tuncer, H. Gulbudak, V.L. Cannataro, M. Martcheva Structural and practical identifiability issues of immuno-epidemiological vector–host models with application to rift valley fever Bull. Math. Biol 2016 1796 1827

[41] J.S. Welker, M. Martcheva A novel multi-scale immuno-epidemiological model of visceral leishmaniasis in dogs BIOMATH 2019 1901026

[42] N. Wikan, D.R. Smith Zika virus: history of a newly emerging arbovirus Lancet Infect. Diseases 2016 e119 e126

[43] Y. Yang, S. Ruan, D. Xiao Global stability of an age-structured virus dynamics model with Beddington-Deangels infection function Math. Biosci. Eng 2015 850 877

[44] K. Yosida, Functional Analysis. Springer-Verlag (1968).

[45] Zika virus key facts. 2020

Cité par Sources :