Voir la notice de l'article provenant de la source EDP Sciences
Nguyen Huy Tuan 1 ; Nguyen Anh Tuan 2 ; Donal O’Regan 3 ; Vo Viet Tri 2
@article{MMNP_2021_16_a15, author = {Nguyen Huy Tuan and Nguyen Anh Tuan and Donal O{\textquoteright}Regan and Vo Viet Tri}, title = {On the initial value problem for fractional {Volterra} integrodifferential equations with a {Caputo{\textendash}Fabrizio} derivative}, journal = {Mathematical modelling of natural phenomena}, eid = {18}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021010}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021010/} }
TY - JOUR AU - Nguyen Huy Tuan AU - Nguyen Anh Tuan AU - Donal O’Regan AU - Vo Viet Tri TI - On the initial value problem for fractional Volterra integrodifferential equations with a Caputo–Fabrizio derivative JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021010/ DO - 10.1051/mmnp/2021010 LA - en ID - MMNP_2021_16_a15 ER -
%0 Journal Article %A Nguyen Huy Tuan %A Nguyen Anh Tuan %A Donal O’Regan %A Vo Viet Tri %T On the initial value problem for fractional Volterra integrodifferential equations with a Caputo–Fabrizio derivative %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021010/ %R 10.1051/mmnp/2021010 %G en %F MMNP_2021_16_a15
Nguyen Huy Tuan; Nguyen Anh Tuan; Donal O’Regan; Vo Viet Tri. On the initial value problem for fractional Volterra integrodifferential equations with a Caputo–Fabrizio derivative. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 18. doi : 10.1051/mmnp/2021010. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021010/
[1] Controllability for impulsive fractional evolution inclusions with state-dependent delay Adv. Theory Nonlinear Anal. Appl 2019 18 34
, ,[2] On a differential equation with Caputo–Fabrizio fractional derivative of order 1 β ≤ 2 and application to mass-spring-damper system Progr. Fract. Differ. Appl 2017 257 263
, ,[3] Abstract Volterra integrodifferential equations with applications to parabolic models with memory Math. Ann 2017 1131 1175
,[4] Integrodifferential equations with applications to a plate equation with memory Math. Nachr 2016 2159 2172
,[5] A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions Bound. Value Probl 2020 64
, ,[6] On the new fractional hybrid boundary value problems with three-point integral hybrid conditions Adv. Differ. Equ 2019 473
, , ,[7] Analysis of the model of HIV-1 infection of CD4+ T-cell with a new approach of fractional derivative Adv Differ Equ 2020 71
, ,[8] The extended fractional Caputo-Fabrizio derivative of order 0 ≤ σ 1 on Cℝ[0,1] and the existence of solutions for two higher-order series-type differential equations Adv. Differ. Equ 2018 255
, ,[9] A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative Chaos, Solitons Fractals 2020 109705
, , ,[10] The fractional features of a harmonic oscillator with position-dependent mass Commun. Theor. Phys 2020 055002
, , ,[11] On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivation Bound. Value Probl 2019 79
, ,[12] Some existence results on nonlinear fractional differential equations Philos. Trans. R.Soc. Lond. Ser. A Math. Phys. Eng. Sci 2013 20120144
, ,[13] Subordination principle for fractional evolution equations Fract. Calc. Appl. Anal 2000 213 230
[14] Cauchy problems of semilinear pseudo-parabolic equations J. Differ. Equ 2009 4568 4590
, ,[15] applications of new time and spatial fractional derivatives with exponential kernels Progr. Fract. Differ. Appl 2016 1 11
,[16] A new definition of fractional derivative without singular Kernel Prog. Fract. Differ. Appl 2015 73 85
,[17] Attractors for 2D-Navier-Stokes models with delays J. Differ. Equ. 2004 271 297
,[18] Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci 2003 3181 3194
,[19] Pathwise solutions of SPDEs driven by Hö lder-continuous integrators with exponent larger than 1/2 and random dynamical systems Discr. Continu. Dyn. Syst. Series A 2014 79 98
, , ,[20] Reaction-diffusion with memory in the minimal state framework Trans. Amer. Math. Soc 2014 4969 4986
, ,[21] A well posedness result for nonlinear viscoelastic equations with memory Nonlinear Anal 2014 206 216
, ,[22] The influence of a nonlinear memory on the damped wave equation Nonlinear Anal 2014 130 145
[23] A new fractional-order mask for image edge detection based on Caputo–Fabrizio fractional-order derivative without singular kernel Circuits Syst. Signal Process 2020 1419 1448
, , ,[24] asymptotic decay for some differential systems with fading memory Appl. Anal 2002 1245 1264
,[25] Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg–de Vries–Burgers equation Math. Model. Anal 2016 188 198
,[26] A new iterative method for the numerical solution of high-order non-linear fractional boundary value problems Front. Phys 2020 220
,[27] On the fractional optimal control problems with a general derivative operator Asian J. Control 2021 1062 1071
,[28] Sufficient conditions of non global solution for fractional damped wave equations with non-linear memory Adv. Theory Nonlinear Anal. Appl. 2018 224 237
,[29] Existence results and stability criteria for ABC-fuzzy-Volterra integro-differential equation Fractals 2020 9
, , ,[30] on the linear heat equation with fading memory SIAM J. Math. Anal 1990 1213 1224
[31] Fractional Cauchy problems on bounded domains Ann. Probab 2009 979 1007
, ,[32] A hybrid functions numerical scheme for fractional optimal control problems: application to non-analytic dynamical systems J. Vib. Control 2018 5030 5043
, , ,[33] Solutions of systems with the Caputo-Fabrizio fractional delta derivative on time scales Nonlinear Anal. Hybrid Syst 2019 168 176
, ,[34] Smoothing effect and propagations of singularities for viscoelastic plates J. Math. Anal. Appl 1997 397 427
,[35] Life span of blowing-up solutions to the Cauchy problem for a time-space fractional diffusion equation Comput. Math. Appl 2019 1302 1316
[36] A new adaptive synchronization and hyperchaos control of a biological snap oscillator Chaos Solitons Fractals 2020 109919
, , ,[37] On the existence of blow up solutions for a class of fractional differential equations Fract. Calc. Appl. Anal 2015 281 283
,[38] A mathematical model for COVID-19 transmission by using the Caputo fractional derivative Chaos Solitons Fractals 2020 110107
, ,[39] Well-posedness of an initial value problem for fractional diffusion equation with Caputo-Fabrizio derivative J. Comput. Appl. Math 2020 112811
,[40] Local well-posedness for a Lotka-Volterra system in Besov spaces Comput. Math. Appl 2015 667 674
Cité par Sources :