Voir la notice de l'article provenant de la source EDP Sciences
Jayanta Kumar Ghosh 1 ; Prahlad Majumdar 2 ; Uttam Ghosh 2
@article{MMNP_2021_16_a27, author = {Jayanta Kumar Ghosh and Prahlad Majumdar and Uttam Ghosh}, title = {Qualitative analysis and optimal control of an {SIR} model with logistic growth, non-monotonic incidence and saturated treatment}, journal = {Mathematical modelling of natural phenomena}, eid = {13}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2021004}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021004/} }
TY - JOUR AU - Jayanta Kumar Ghosh AU - Prahlad Majumdar AU - Uttam Ghosh TI - Qualitative analysis and optimal control of an SIR model with logistic growth, non-monotonic incidence and saturated treatment JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021004/ DO - 10.1051/mmnp/2021004 LA - en ID - MMNP_2021_16_a27 ER -
%0 Journal Article %A Jayanta Kumar Ghosh %A Prahlad Majumdar %A Uttam Ghosh %T Qualitative analysis and optimal control of an SIR model with logistic growth, non-monotonic incidence and saturated treatment %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021004/ %R 10.1051/mmnp/2021004 %G en %F MMNP_2021_16_a27
Jayanta Kumar Ghosh; Prahlad Majumdar; Uttam Ghosh. Qualitative analysis and optimal control of an SIR model with logistic growth, non-monotonic incidence and saturated treatment. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 13. doi : 10.1051/mmnp/2021004. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021004/
[1] F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology. Springer, New York (2011).
[2] A generalization of the Kermack-Mckendric deterministic epidemic model Math. Biosci 1978 43 61
,[3] S.A. Carvalho, S.O. da Silva and I.C. da Cunha, Mathematical modeling of dengue epidemic: control methods and vaccination strategies. Preprint arXiv:1508.00961 (2015).
[4] O. Diekman and J.A.P. Heesterbeek: Mathematical Epidemiology of Infectious Disease. Wiley, New York (2000).
[5] The construction of next-generation matrices for compartmental epidemic models J. R. Soc. Interface 2010 873 885
, ,[6] Qualitative analysis and optimal control strategy of an SIR model with saturated incidence and treatment To appear in: Differ. Equ. Dyn. Syst. 2019
, , ,[7] Complex dynamics of an SIR epidemic model with saturated incidence rate and treatment Acta Biotheor 2016 65 84
, ,[8] Y.A. Kuznetsov: Elements of Applied Bifurcation Theory. Springer, New York (1998).
[9] Optimal control of an SIR epidemic model with a saturated treatment Appl. Math. Inf. Sci 2016 185 191
[10] S. Lenhart and J.T. Workman, Optimal control applied to biological model. Mathematical and computational biology series. Chapman and Hall/CRC, Boca Raton (2007).
[11] Stability and bifurcation analysis of an SIR epidemic model with logistic growth and saturated treatment Chaos. Solit. Fract 2017 63 71
, , , ,[12] Global dynamics of a susceptible-infectious-recovered epidemic model with a generalized nonmonotone incidence rate To appear in: J. Dyn. Differ. Equ. 2020
, ,[13] Bifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rate J. Differ. Equ 2019 1859 1898
, , ,[14] M. Martcheva, An Introduction to Mathematical Epidemiology. Springer, New York (2015).
[15] J.D. Murray, Mathematical Biology. Springer, New York (1993).
[16] Complex dynamics and optimal treatment of an epidemic model with two infectious diseases Int. J. Appl. Comput. Math 2019 29
, , ,[17] L. Perko, Differential Equations and Dynamical Systems, in Vol. 7. Springer, New York (2000).
[18] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes. Wiley, New Jersey (1962).
[19] Optimal control in epidemiology Ann. Oper. Res 2017 55 71
,[20] Dynamics of an SEIR epidemic model with nonlinear incidence and treatment rates Nonlinear Dyn 2019 2351 2368
, , ,[21] Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease trans-mission Math Biosci 2002 29 48
,[22] Backward bifurcation of an epidemic model with treatment Math. Biosci 2006 58 71
[23] Bifurcation in an epidemic model with constant removal rate of the infectives J. Math. Anal. Appl 2004 775 793
,[24] Qualitative and bifurcation analysis using an SIR model with a saturated treatment function Math. Comput. Model 2012 710 722
, , ,[25] Global analysis of an epidemic model with a nonlinear incidence rate Math. Biosci 2007 419 429
,[26] Global stability of a delayed SIRS epidemic model with saturation incidence and temporary immunity Comput. Math. Appl 2010 3211 3221
, ,[27] Backward bifurcation of an epidemic model with saturated treatment function J. Math. Anal. Appl 2008 433 443
,[28] Dynamics of an SLIR model with nonmonotone incidence rate and stochastic perturbation Math. Biosci. Eng 2019 5504 5530
, ,[29] Qualitative analysis of a SIR epidemic model with saturated treatment rate J. Appl. Math. Comput 2010 177 194
,Cité par Sources :