Jiří Felcman 1 ; Petr Kubera 2, 3
@article{10_1051_mmnp_2021002,
author = {Ji\v{r}{\'\i} Felcman and Petr Kubera},
title = {A cellular automaton model for a pedestrian flow problem},
journal = {Mathematical modelling of natural phenomena},
eid = {11},
year = {2021},
volume = {16},
doi = {10.1051/mmnp/2021002},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021002/}
}
TY - JOUR AU - Jiří Felcman AU - Petr Kubera TI - A cellular automaton model for a pedestrian flow problem JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021002/ DO - 10.1051/mmnp/2021002 LA - en ID - 10_1051_mmnp_2021002 ER -
Jiří Felcman; Petr Kubera. A cellular automaton model for a pedestrian flow problem. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 11. doi: 10.1051/mmnp/2021002
[1] , , Cellular automata: From a theoretical parallel computational model to its application to complex systems Parallel Comput 2001 539 553
[2] , On the modelling crowd dynamics from scaling to hyperbolic macroscopic models Math. Models Methods Appl. Sci 2008 1317 1345
[3] , , From the modelling of driver’s behavior to hydrodynamics models and problems of traffic flow Nonlinear Anal. RWA 2002 339 363
[4] S. Buchmueller and U. Weidmann, Parameters of pedestrians, in: Pedestrian Traffic and Walking Facilities. Technical report, Schriftenreihe des IVT, ETH Zurich (2006).
[5] , , , Simulation of pedestrian dynamics using a two-dimensional cellular automaton Physica A 2001 507 525
[6] E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics. Springer International Publishing (2014).
[7] , Gradient navigation model for pedestrian dynamics Phys. Rev. E 2014 062801
[8] On the modelling of crowd dynamics by generalized kinetic models J. Math. Anal. Appl 2012 512 532
[9] , , FV–DG method for the Pedestrian flow problem Comput, Fluids 2019 1 15
[10] Simulation of high density pedestrian flow: Microscopic model Open J. Modell. Simul 2015 81 95
[11] M. Feistauer, J. Felcman and I. Straškraba Mathematical and computational methods for compressible flow. Clarendon Press (2003).
[12] J. Felcman and P. Kubera, Eikonal equation based cellular automaton for a pedestrian evacuation problem. In T. E. Simos and Ch. Tsitouras, editors, ICNAAM 2019 AIP Conference Proceedings. American Institute of Physics (2019) 1–4.
[13] , , , , Modeling fatigue of ascending stair evacuation with modified fine discrete floor field cellular automata Phys. Lett. A 2019 1897 1906
[14] , , A simplified method to provide evacuation guidance in a multi-exit building under emergency Physica A 2020 123554
[15] , Social force model for pedestrian dynamics Phys. Rev. E 1995 4282 4286
[16] , , , Dynamic navigation field in the social force model for pedestrian evacuation Appl. Math. Modell 2020 815 826
[17] , , , A higher-order macroscopic model for pedestrian flows Physica A 2010 4623 4635
[18] , Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics Physica A 2002 260 276
[19] , On a numerical flux for the pedestrian flow equations JAMSI 2015 79 96
[20] , , , , , A review of cellular automata models for crowd evacuation Physica A 2019 120752
[21] , , , , , Modeling the effect of visibility on upstairs crowd evacuation by a stochastic ffca model with finer discretization Physica A 2019 121723
[22] H.J. Payne, Models of freeway traffic and control. Simulation Councils, Incorporated (1971).
[23] T. Petrášová Application of the Dijkstra’s algorithm in the pedestrian flow problem. Bc thesis, Charles University in Prague (2016).
[24] , , , Modelling building emergency evacuation plans considering the dynamic behaviour of pedestrians using agent-based simulation Saf. Sci 2019 276 284
[25] , , Basics of modelling the pedestrian flow Physica A 2006 232 238
[26] , , Agent-based simulation of building evacuation: combining human behavior with predictable spatial accessibility in a fire emergency Inf. Sci 2015 53 66
[27] , , Macroscopic modeling and simulation of room evacuation Appl. Math. Modell 2014 5781 5795
[28] G.B. Whitham, Linear and nonlinear waves. Pure and applied mathematics, Wiley (1974).
[29] , , , Potential field cellular automata model for pedestrian flow Phys. Rev. E 2012 021119
[30] A fast sweeping method for Eikonal equations Math. Comput 2005 603 627
Cité par Sources :