A cellular automaton model for a pedestrian flow problem
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 11.

Voir la notice de l'article provenant de la source EDP Sciences

The evacuation phenomena in the two dimensional pedestrian flow model are simulated. The intended direction of the escape of pedestrians in panic situations is governed by the Eikonal equation of the pedestrian flow model. A new two-dimensional Cellular Automaton (CA) model is proposed for the simulation of the pedestrian flow. The solution of the Eikonal equation is used to define the probability matrix whose elements express the probability of a pedestrian moving in finite set of directions. The novelty of this paper lies in the construction of the density dependent probability matrix. The relevant evacuation scenarios are numerically solved. Predictions of the evacuation behavior of pedestrians, for various room geometries with multiple exits, are demonstrated. The mathematical model is numerically justified by comparison of CA approach with the Finite Volume Method for the space discretization and Discontinuous Galerkin Method for the implicit time discretization of pedestrian flow model.
DOI : 10.1051/mmnp/2021002

Jiří Felcman 1 ; Petr Kubera 2, 3

1 Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
2 Department of Informatics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague,Czech Republic.
3 Department of Software Engineering, Faculty of Science, Jan Evengelista Purkyně University, Ústí nad Labem, Czech Republic.
@article{MMNP_2021_16_a11,
     author = {Ji\v{r}{\'\i} Felcman and Petr Kubera},
     title = {A cellular automaton model for a pedestrian flow problem},
     journal = {Mathematical modelling of natural phenomena},
     eid = {11},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021002/}
}
TY  - JOUR
AU  - Jiří Felcman
AU  - Petr Kubera
TI  - A cellular automaton model for a pedestrian flow problem
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021002/
DO  - 10.1051/mmnp/2021002
LA  - en
ID  - MMNP_2021_16_a11
ER  - 
%0 Journal Article
%A Jiří Felcman
%A Petr Kubera
%T A cellular automaton model for a pedestrian flow problem
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021002/
%R 10.1051/mmnp/2021002
%G en
%F MMNP_2021_16_a11
Jiří Felcman; Petr Kubera. A cellular automaton model for a pedestrian flow problem. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 11. doi : 10.1051/mmnp/2021002. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021002/

[1] S. Bandini, G. Mauri, R. Serra Cellular automata: From a theoretical parallel computational model to its application to complex systems Parallel Comput 2001 539 553

[2] N. Bellomo, Ch. Dogbé On the modelling crowd dynamics from scaling to hyperbolic macroscopic models Math. Models Methods Appl. Sci 2008 1317 1345

[3] N. Bellomo, A. Marasco, A. Romano From the modelling of driver’s behavior to hydrodynamics models and problems of traffic flow Nonlinear Anal. RWA 2002 339 363

[4] S. Buchmueller and U. Weidmann, Parameters of pedestrians, in: Pedestrian Traffic and Walking Facilities. Technical report, Schriftenreihe des IVT, ETH Zurich (2006).

[5] C. Burstedde, K. Klauck, A. Schadschneider, J. Zittartz Simulation of pedestrian dynamics using a two-dimensional cellular automaton Physica A 2001 507 525

[6] E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics. Springer International Publishing (2014).

[7] F. Dietrich, G. Köster Gradient navigation model for pedestrian dynamics Phys. Rev. E 2014 062801

[8] C. Dogbe On the modelling of crowd dynamics by generalized kinetic models J. Math. Anal. Appl 2012 512 532

[9] V. Dolejší, J. Felcman, P. Kubera FV–DG method for the Pedestrian flow problem Comput, Fluids 2019 1 15

[10] M.H. Dridi Simulation of high density pedestrian flow: Microscopic model Open J. Modell. Simul 2015 81 95

[11] M. Feistauer, J. Felcman and I. Straškraba Mathematical and computational methods for compressible flow. Clarendon Press (2003).

[12] J. Felcman and P. Kubera, Eikonal equation based cellular automaton for a pedestrian evacuation problem. In T. E. Simos and Ch. Tsitouras, editors, ICNAAM 2019 AIP Conference Proceedings. American Institute of Physics (2019) 1–4.

[13] Z. Fu, X. Zhan, L. Luo, A. Schadschneider, J. Chen Modeling fatigue of ascending stair evacuation with modified fine discrete floor field cellular automata Phys. Lett. A 2019 1897 1906

[14] J. Gao, J. He, J. Gong A simplified method to provide evacuation guidance in a multi-exit building under emergency Physica A 2020 123554

[15] D. Helbing, P. Molnár Social force model for pedestrian dynamics Phys. Rev. E 1995 4282 4286

[16] Y. Jiang, B. Chen, X. Li, Z. Ding Dynamic navigation field in the social force model for pedestrian evacuation Appl. Math. Modell 2020 815 826

[17] Y.Q. Jiang, P. Zhang, S.C. Wong, R.X. Liu A higher-order macroscopic model for pedestrian flows Physica A 2010 4623 4635

[18] A. Kirchner, A. Schadschneider Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics Physica A 2002 260 276

[19] P. Kubera, J. Felcman On a numerical flux for the pedestrian flow equations JAMSI 2015 79 96

[20] Y. Li, M. Chen, Z. Dou, X. Zheng, Y. Cheng, A. Mebarki A review of cellular automata models for crowd evacuation Physica A 2019 120752

[21] R. Liu, Z. Fu, A. Schadschneider, Q. Wen, J. Chen, S. Liu Modeling the effect of visibility on upstairs crowd evacuation by a stochastic ffca model with finer discretization Physica A 2019 121723

[22] H.J. Payne, Models of freeway traffic and control. Simulation Councils, Incorporated (1971).

[23] T. Petrášová Application of the Dijkstra’s algorithm in the pedestrian flow problem. Bc thesis, Charles University in Prague (2016).

[24] K. Rendán Rozo, J. Arellana, A. Santander-Mercado, M. Jubiz-Diaz Modelling building emergency evacuation plans considering the dynamic behaviour of pedestrians using agent-based simulation Saf. Sci 2019 276 284

[25] A. Seyfried, B. Steffen, T. Lippert Basics of modelling the pedestrian flow Physica A 2006 232 238

[26] L. Tan, M. Hu, H. Lin Agent-based simulation of building evacuation: combining human behavior with predictable spatial accessibility in a fire emergency Inf. Sci 2015 53 66

[27] M. Twarogowska, P. Goatin, R. Duvigneau Macroscopic modeling and simulation of room evacuation Appl. Math. Modell 2014 5781 5795

[28] G.B. Whitham, Linear and nonlinear waves. Pure and applied mathematics, Wiley (1974).

[29] P. Zhang, X.-X. Jian, S.C. Wong, K. Choi Potential field cellular automata model for pedestrian flow Phys. Rev. E 2012 021119

[30] Hk. Zhao A fast sweeping method for Eikonal equations Math. Comput 2005 603 627

Cité par Sources :