Comparison of dynamical behavior between fractional order delayed and discrete conformable fractional order tumor-immune system
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 3.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we analyze the dynamical behavior of the delayed fractional-order tumor model with Caputo sense and discretized conformable fractional-order tumor model. The model is constituted with the group of nonlinear differential equations having effector and tumor cells. First of all, stability and bifurcation analysis of the delayed fractional-order tumor model in the sense of Caputo fractional derivative is studied, and the existence of Hopf bifurcation depending on the time delay parameter is proved by using center manifold and bifurcation theory. Applying the discretization process based on using the piecewise constant arguments to the conformable version of the model gives a two-dimensional discrete system. Stability and Neimark–Sacker bifurcation analysis of the discrete system are demonstrated using the Schur-Cohn criterion and projection method. This study reveals that the delay parameter τ in the model with Caputo fractional derivative and the discretization parameter h in the discrete-time conformable fractional-order model have similar effects on the dynamical behavior of corresponding systems. Moreover, the effect of the order of fractional derivative on the dynamical behavior of the systems is discussed. Finally, all results obtained are interpreted biologically, and numerical simulations are presented to illustrate and support theoretical results.
DOI : 10.1051/mmnp/2020055

Ercan Balci 1 ; Senol Kartal 2 ; Ilhan Ozturk 1

1 Department of Mathematics, Erciyes University, Kayseri 38039, Turkey.
2 Department of Science and Mathematics Education, Nevsehir Hacı Bektas Veli University, Nevsehir 50300, Turkey.
@article{MMNP_2021_16_a12,
     author = {Ercan Balci and Senol Kartal and Ilhan Ozturk},
     title = {Comparison of dynamical behavior between fractional order delayed and discrete conformable fractional order tumor-immune system},
     journal = {Mathematical modelling of natural phenomena},
     eid = {3},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2020055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020055/}
}
TY  - JOUR
AU  - Ercan Balci
AU  - Senol Kartal
AU  - Ilhan Ozturk
TI  - Comparison of dynamical behavior between fractional order delayed and discrete conformable fractional order tumor-immune system
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020055/
DO  - 10.1051/mmnp/2020055
LA  - en
ID  - MMNP_2021_16_a12
ER  - 
%0 Journal Article
%A Ercan Balci
%A Senol Kartal
%A Ilhan Ozturk
%T Comparison of dynamical behavior between fractional order delayed and discrete conformable fractional order tumor-immune system
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020055/
%R 10.1051/mmnp/2020055
%G en
%F MMNP_2021_16_a12
Ercan Balci; Senol Kartal; Ilhan Ozturk. Comparison of dynamical behavior between fractional order delayed and discrete conformable fractional order tumor-immune system. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 3. doi : 10.1051/mmnp/2020055. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020055/

[1] R.P. Agarwal, A.M.A. El-Sayed, S.M. Salman Fractional-order Chua’s system: discretization, bifurcation and chaos Adv. Differ. Equ 2013 1 13

[2] C.N. Angstmann, B.I. Henry, B.A. Jacobs, A.V. Mcgann Discretization of fractional differential equations by a piecewise constant approximation MMNP 2017 23 36

[3] A. Atangana A novel model for the Lassa hemorrhagic fever: deathly disease for pregnant woman Neural Comput. Appl 2015 1895 1903

[4] K. Baisad, S. Moonchai Analysis of stability and hopf bifurcation in a fractional Gauss-type predator-prey model with Allee effect and Holling type-III functional response Adv. Differ. Equ 2018 82

[5] E. Balcı, I. Ozturk, S. Kartal Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative Chaos Solitons Fractals 2019 43 51

[6] D. Baleanu, A. Jajarmi, E. Bonyah, M. Hajipour New aspects of poor nutrition in the life cycle within the fractional calculus Adv. Differ. Equ 2018 230

[7] D. Baleanu, A. Jajarmi, S.S. Sajjadi, J.H. Asad The fractional features of a harmonic oscillator with position-dependent mass Commun. Theor. Phys 2020 055002

[8] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative Chaos Solitons Fractals 2020 109705

[9] B. Barman, B. Ghosh Explicit impacts of harvesting in delayed predator–prey models Chaos Solitons Fractals 2019 213 228

[10] S. Bhalekar, V.A. Daftardar-Gejji A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order J. Fract. Calc. Appl 2011 1 9

[11] L. Bolton, A.H. Cloot, S.W. Schoombie, J.P. Slabbert A proposed fractional-order Gompertz model and its application to tumour growth data Math. Med. Biol 2015 187 207

[12] F. Bozkurt, T. Abdeljavad, M.A. Hajji Stability analysis of a fractional-order differential equation model of a brain tumor growth depending on the density Appl. Comput. Math 2015 50 62

[13] W.S. Chung Fractional Newton mechanics with conformable fractional derivative J. Comput. Appl. Math 2015 150 158

[14] K.L. Cooke, J. Wiener Retarded differential equations with piecewise constant delays J. Mater. Anal. Appl 1984 265 297

[15] K.L. Cooke, J. Wiener Stability regions for linear equations with piecewise continuous delay Comp. Math. Appl 1986 695 701

[16] Kl. Cooke, I. Gyori Numerical approximation of the solution of delay differential equations on an infinite interval using picewise constant arguments Comp. Math. Appl 1994 81 92

[17] T.S. Deisboeck, Z. Wang Cancer dissemination: a consequence of limited carrying capacity? Med. Hypotheses 2007 173 177

[18] W. Deng, C. Li, J. Lu Stability analysis of linear fractional differential system with multiple time delays Nonlinear Dyn 2009 409 416

[19] K. Diethelm, N.J. Ford, A.D. Freed A predictor-corrector appraoch for the numerical solution of fractional differential equations Nonlinear Dyn 2002 3 22

[20] A. Dokoumetzidis, P. Macheras Fractional kinetics in drug absorption and disposition processes J. Pharmacokinet. Pharmacodyn 2009 165 178

[21] Y. Dong, G. Huang, R. Miyazaki, Y. Takeuchi Dynamics in a tumor immune system with time delays Appl. Math. Comput 2015 99 113

[22] A. D’Onofrio, F. Gatti, P. Cerrai, L. Freschi Delay-induced oscillatory dynamics of tumour-immune system interaction Math. Comput. Model 2010 572 591

[23] Z.F. El-Raheem, S.M. Salman On a discretization process of fractional-order logistic differential equation J. Egyptian Math. Soc 2014 407 412

[24] A.M.A El-Sayed, Z.F. El-Raheem, S.M. Salman Disretization of forced duffing system with fractional-order damping Adv. Differ. Equ 2014 66

[25] M. Galach Dynamics of the tumor-immune system competition-the effect of the time delay Int. J. Math. Comput. Sci 2003 395 406

[26] K. Gopalsamy, P. Liu Persistence and global stability in a population model J. Math. Anal. Appl 1998 59 80

[27] A. Goswami, J. Singh, D. Kumar, Sushila An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma Physica A 2019 563 575

[28] I. Gyori On approximation of the solutions of delay differential equations by using piecewise constant arguments Int. J. Math. Math. Sci 1991 111 126

[29] G.E. Hutchinson Circular casual systems in ecology Ann. NY. Acad. Sci 1948 221 246

[30] C. Ionescu, A. Lopes, D. Copot, J.A.T. Machado, J.H.D. Bates The role of fractional calculus in modeling biological phenomena: a review Commun. Nonlinear Sci. Numer. Simulat 2017 141 159

[31] A. Jajarmi, A. Yusuf, D. Baleanu, M. Inc A new fractional HRSV model and its optimal control: a non-singular operator approach Physica A 2020 123860

[32] A. Jajarmi, D. Baleanu A new iterative method for the numerical solution of high-order non-linear fractional boundary value problems Front. Phys 2020 220

[33] A. Jajarmi, D. Baleanu On the fractional optimal control problems with a general derivative operator Asian J. Control 2019 1 10

[34] S. Kartal, F. Gurcan Discretization of conformable fractional differential equations by a piecewise constant approximation Int. J. Comput. Math 2019 1849 1860

[35] R. Khalil, M.A. Horani, A. Yousef, M. Sababheh A new definition of fractional derivative J. Comput. Appl. Math 2014 65 70

[36] A. Khan, T. Abdeljavad, J.F. Gomez-Aguilar, H. Khan Dynamical study of fractional order mutualism parasitism food web module Chaos Solitons Fractals 2020 109685

[37] D. Kumar, J. Singh, M. Al Qurashi, D. Baleanu A new fractional SIRS-SI malaria disease model with application of vaccines, antimalarial drugs, and spraying Adv. Differ. Equ 2019 278

[38] S. Kumar, A. Ahmadian, R. Kumar, D. Kumar, J. Singh, D. Baleanu, M. Salimi An efficient numerical method for fractionalSIR epidemic model of infectious disease by using Bernstein wavelets Mathematics 2020 558

[39] D. Kumar, J. Singh, K. Tanwar, D. Baleanu A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws Int. J. Heat Mass Transfer 2019 1222 1227

[40] V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, S. Perelson Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis Bull. Math. Biol 1994 295 321

[41] V.A. Kuznetsov, Elements of Applied Bifurcation Theory. Springer, New York (1998).

[42] D. Li, Y. Yang Impact of time delay on population model with Allee effect Commun. Nonlinear Sci. Numer. Simulat 2019 282 293

[43] M.A. Medina Mathematical modeling of cancer metabolism Crit. Rev. Oncol./Hematol 2018 37 40

[44] A. Muhammadhaji, Z. Teng, L. Zhang Permanence in general non-autonomous Lotka–Volterra predator–prey systems with distributed delays and impulses J. Biol. Syst 2013 1350012

[45] J.D. Murray, Mathematical Biology. Springer, New York (1993).

[46] I. Petras, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Berlin (2011).

[47] C.M.A. Pinto, J.T. Machado Fractional model for malaria transmission under control strategies Comp. Math. Appl 2013 908 916

[48] M.J. Piotrowska An immune system–tumour interactions model with discrete time delay: model analysis and validation Commun. Nonlinear Sci. Numer. Simulat 2016 185 193

[49] I. Podlubny, Fractional Differential Equations, Academic Press, New York (1999).

[50] F.A. Rihan, Q.M. Al-Mdallal, H.J. Alsakaji, A. Hashish A fractional-order epidemic model with time-delay and nonlinear incidence rate Chaos Solitons Fractals 2019 97 105

[51] F.A. Rihan, G. Velmurugan Dynamics of fractional-order delay differential model for tumor-immune system Chaos Solitons Fractals 2020 109592

[52] S.S. Sajjadi, D. Baleanu, A. Jajarmi, H.M. Pirouz A new adaptive synchronization and hyperchaos control of a biological snap oscillator Chaos Solitons Fractals 2020 109919

[53] J. Singh, D. Kumar, D. Baleanu A new analysis of fractional fish farm model associated with Mittag-Leffler-type kernel Int. J. Biomath 2020 2050010

[54] X. Tang, X. Zou On positive periodic solutions of Lotka-Volterra competition systems with deviating arguments Proc. Am. Math. Soc 2006 2967 2974

[55] R. Thomlinson Measurement and management of carcinoma of the breast Clin. Radiol 1982 481 492

[56] Z. Wang A numerical method for delayed fractional-order differential equations J. Appl. Math 2013 256071

[57] J. Wiener, V. Lakshmikantham A damped oscillator with picewise constant time delay Nonlinear Stud 2000 78 84

[58] C. Xu, Y. Wu Positive periodic solutions in a discrete time three species competition system J. Appl. Math 2013 963046

Cité par Sources :