A partitioned numerical scheme for fluid–structure interaction with slip
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 8.

Voir la notice de l'article provenant de la source EDP Sciences

We present a loosely coupled, partitioned scheme for solving fluid–structure interaction (FSI) problems with the Navier slip boundary condition. The fluid flow is modeled by the Navier–Stokes equations for an incompressible, viscous fluid, interacting with a thin elastic structure modeled by the membrane or Koiter shell type equations. The fluid and structure are coupled via two sets of coupling conditions: a dynamic coupling condition describing balance of forces, and a kinematic coupling condition describing fluid slipping tangentially to the moving fluid–structure interface, with no penetration in the normal direction. Problems of this type arise in, e.g., FSI with hydrophobic structures or surfaces treated with a no-stick coating, and in biologic FSI involving rough surfaces of elastic tissues or tissue scaffolds. We propose a novel, efficient partitioned scheme where the fluid sub-problem is solved separately from the structure sub-problem, and there is no need for sub-iterations at every time step to achieve stability, convergence, and its first-order accuracy. We derive energy estimates, which prove that the proposed scheme is unconditionally stable for the corresponding linear problem. Moreover, we present convergence analysis and show that under a time-step condition, the method is first-order accurate in time and optimally convergent in space for a Finite Element Method-based spatial discretization. The theoretical rates of convergence in time are confirmed numerically on an example with an explicit solution using the method of manufactured solutions, and on a benchmark problem describing propagation of a pressure pulse in a two-dimensional channel. The effects of the slip rate and fluid viscosity on the FSI solution are numerically investigated in two additional examples: a 2D cylindrical FSI example for which an exact Navier slip Poiseuille-type solution is found and used for comparison, and a squeezed ketchup bottle example with gravity enhanced flow. We show that the Navier-slip boundary condition increases the outflow mass flow rate by 21% for a bottle angled at 45 degrees pointing downward, in the direction of gravity.
DOI : 10.1051/mmnp/2020051

Martina Bukač 1 ; Sunčica Čanić 2

1 Applied and Computational Mathematics and Statistics, University of Notre Dame, USA.
2 Department of Mathematics, University of California, Berkeley, USA.
@article{MMNP_2021_16_a36,
     author = {Martina Buka\v{c} and Sun\v{c}ica \v{C}ani\'c},
     title = {A partitioned numerical scheme for fluid{\textendash}structure interaction with slip},
     journal = {Mathematical modelling of natural phenomena},
     eid = {8},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2020051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020051/}
}
TY  - JOUR
AU  - Martina Bukač
AU  - Sunčica Čanić
TI  - A partitioned numerical scheme for fluid–structure interaction with slip
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020051/
DO  - 10.1051/mmnp/2020051
LA  - en
ID  - MMNP_2021_16_a36
ER  - 
%0 Journal Article
%A Martina Bukač
%A Sunčica Čanić
%T A partitioned numerical scheme for fluid–structure interaction with slip
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020051/
%R 10.1051/mmnp/2020051
%G en
%F MMNP_2021_16_a36
Martina Bukač; Sunčica Čanić. A partitioned numerical scheme for fluid–structure interaction with slip. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 8. doi : 10.1051/mmnp/2020051. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020051/

[1] M. Astorino, F. Chouly, M. Fernández An added-mass free semi-implicit coupling scheme for fluid-structure interaction Comptes Rendus Math 2009 99 104

[2] F. Baaijens A fictitious domain/mortar element method for fluid-structure Interaction Int. J. Numer. Methods Fluids 2001 743 761

[3] S. Badia, F. Nobile, C. Vergara Fluid–structure partitioned procedures based on Robin transmission conditions J. Computat. Phys 2008 7027 7051

[4] S. Badia, F. Nobile, C. Vergara Robin–Robin preconditioned Krylov methods for fluid–structure interaction problems Comput. Methods Appl. Mech. Eng 2009 2768 2784

[5] H. Baek, G. Karniadakis A convergence study of a new partitioned fluid–structure interaction algorithm based on fictitious mass and damping J. Computat. Phys 2012 629 652

[6] J. Banks, W. Henshaw, D. Schwendeman An analysis of a new stable partitioned algorithm for FSI problems. Part II: Incompressible flow and structural shells J. Computat. Phys. 2014 399 416

[7] V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model, in Fluids and Waves, Vol. 440 of Contemporary Mathematics. American Mathematical Society, Providence, RI (2007) 55–82.

[8] V. Barbu, Z. Grujić, I. Lasiecka, A. Tuffaha Smoothness of weak solutions to a nonlinear fluid–structure interaction model Indiana Univ. Math. J 2008 1173 1207

[9] A. Bonito, R. Nochetto, M. Pauletti Dynamics of biomembranes: effect of the bulk fluid MMNP 2011 25 43

[10] M. Bukac, S. Canic Longitudinal displacement in viscoelastic arteries: a novel fluid–structure interaction computational model, and experimental validation J. Math. Biosci. Eng 2003 258 388

[11] M. Bukac, B. Muha Stability and convergence analysis of the extensions of the kinematically coupled scheme for the fluid–structure interaction SIAM J. Numer. Anal 2016 3032 3061

[12] M. Bukač, S. Čanić, R. Glowinski, J. Tambača, A. Quaini Fluid–structure interaction in blood flow capturing non-zero longitudinal structure displacement J. Computat. Phys 2012 515 541

[13] M. Bukac, S. Canic, R. Glowinski, J. Tambaca, A. Quaini Fluid–structure interaction in blood flow capturing non-zero longitudinal structure displacement J. Computat. Phys 2013 515 541

[14] M. Bukac, S. Canic, R. Glowinski, B. Muha, A. Quaini A modular, operator-splitting scheme for fluid–structure interaction problems with thick structures Int. J. Numer. Methods Fluids 2014 577 604

[15] M. Bukac, S. Canic, B. Muha A partitioned scheme for fluid–composite structure interaction problems J. Computat. Phys 2015 493 517

[16] M. Bukač, I. Yotov, P. Zunino An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure Numer. Methods Partial Differ. Equ 2015 1054 1100

[17] M. Bukac, B. Muha Stability and convergence analysis of the extensions of the kinematically coupled scheme for the fluid–structure interaction SIAM J. Numer. Anal 2016 3032 3061

[18] E. Burman, M. Fernández Stabilization of explicit coupling in fluid–structure interaction involving fluid incompressibility Comput. Methods Appl. Mech. Eng 2009 766 784

[19] E. Burman, M. Fernández An unfitted Nitsche method for incompressible fluid–structure interaction using overlapping meshes Comput. Methods Appl. Mech. Eng 2014 497 514

[20] S. Canic, B. Muha, and M. Bukac, “Fluid-structure interaction in hemodynamics: Modeling, analysis, and numerical simulation, in Fluid–Structure Interaction and Biomedical Applications, Advances in Mathematical Fluid Mechanics. Birkhauser, Basel (2014).

[21] P. Causin, J. Gerbeau, F. Nobile Added-mass effect in the design of partitioned algorithms for fluid-structure problems Comput. Methods Appl. Mech. Eng 2005 4506 4527

[22] A. Chambolle, B. Desjardins, M. Esteban, C. Grandmont Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate J. Math. Fluid Mech 2005 368 404

[23] N. Chemetov, Š. Nečasová The motion of a rigid body in viscous fluid including collisions. A global solvability result Nonlin. Anal. Real World Appl. 2017 416 445

[24] A. Cheng, S. Shkoller The interaction of the 3D Navier–Stokes equations with a moving nonlinear Koiter elastic shell SIAM J. Math. Anal 2010 1094 1155

[25] A. Cheng, D. Coutand, S. Shkoller Navier–Stokes equations interacting with a nonlinear elastic biofluid shell SIAM J. Math. Anal 2007 742 800

[26] W. Chen, M. Gunzburger, F. Hua, X. Wang A parallel Robin–Robin domain decomposition method for the Stokes–Darcy system SIAM J. Numer. Anal 2011 1064 1084

[27] P. Ciarlet, The Finite Element Method for Elliptic Problems, Vol. 4. North Holland (1978).

[28] C.M. Colciago, S. Deparis, A. Quarteroni Comparisons between reduced order models and full 3D models for fluid–structure interaction problems in haemodynamics J. Computat. Appl. Math 2014 120 138

[29] G. Cottet, E. Maitre, T. Milcent Eulerian formulation and level set models for incompressible fluid–structure interaction Math. Modell. Numer. Anal 2008 471 492

[30] D. Coutand, S. Shkoller Motion of an elastic solid inside an incompressible viscous fluid Arch. Rational Mech. Anal 2005 25 102

[31] D. Coutand, S. Shkoller The interaction between quasilinear elastodynamics and the Navier–Stokes equations Arch. Rational Mech. Anal 2006 303 352

[32] H. Da Veiga On the existence of strong solutions to a coupled fluid-structure evolution problem J. Math. Fluid Mech 2004 21 52

[33] J. Donea, Arbitrary Lagrangian–Eulerian finite element methods, in: Computational Methods for Transient Analysis. North-Holland, Amsterdam (1983).

[34] M. Doyle, S. Tavoularis and Y. Bougault, Application of Parallel Processing to the Simulation of Heart Valves. Springer-Verlag, Berlin, Heidelberg (2010).

[35] L. Fauci, R. Dillon Biofluidmechanics of reproduction Ann. Rev. Fluid Mech 2006 371 394

[36] C.A. Felippa, K. Park, C. Farhat Partitioned analysis of coupled mechanical systems Comput. Methods Appl. Mech. Eng 2001 3247 3270

[37] M. Fernández Incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible fluid C. R. Math. Acad. Sci. Paris 2011 473 477

[38] M. Fernández Incremental displacement-correction schemes for incompressible fluid–structure interaction: stability and convergence analysis Numer. Math 2013 21 65

[39] C. Figueroa, I. Vignon-Clementel, K. Jansen, T. Hughes, C. Taylor A coupled momentum method for modeling blood flow in three-dimensional deformable arteries Comput. Methods Appl. Mech. Eng 2006 5685 5706

[40] C. Förster, W. Wall, E. Ramm Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows Comput. Methods Appl. Mech. Eng 2007 1278 1293

[41] D. Gérard-Varet, M. Hillairet Existence of weak solutions up to collision for viscous fluid–solid systems with slip Commun. Pure Appl. Math 2014 2022 2075

[42] D. Gérard-Varet, M. Hillairet, C. Wang The influence of boundary conditions on the contact problem in a 3D Navier–Stokes flow J. Math. Pures Appl. Neuvième Série 2015 1 38

[43] G. Gigante, C. Vergara Analysis and optimization of the generalized Schwarz method for elliptic problems with application to fluid–structure Interaction Numer. Math 2015 369 404

[44] R. Glowinski, Finite element methods for incompressible viscous flow, in Handbook of numerical Analysis, edited by P.G. Ciarlet and J.-L. Lions, . Vol. 9. North-Holland, Amsterdam (2003).

[45] C. Grandmont Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate SIAM J. Math. Anal 2008 716 737

[46] B. Griffith, R. Hornung, D. Mcqueen, C. Peskin An adaptive, formally second order accurate version of the immersed boundary method J. Comput. Phys 2007 10 49

[47] F. Hecht New development in FreeFem++ J. Numer. Math 2012 251 265

[48] M. Hillairet Lack of collision between solid bodies in a 2D incompressible viscous flow Commun. Part. Differ. Equ 2007 1345 1371

[49] M. Hillairet, T. Takahashi Collisions in three-dimensional fluid structure interaction problems SIAM J. Math. Anal 2009 2451 2477

[50] T. Hughes, W. Liu, T. Zimmermann Lagrangian-eulerian finite element formulation for incompressible viscous flows Comput. Methods Appl. Mech. Eng 1981 329 349

[51] M. Ignatova, I. Kukavica, I. Lasiecka, A. Tuffaha On well-posedness for a free boundary fluid-structure model J. Math. Phys 2012 115624

[52] M. Krafczyk, J. Tolke, E. Rank, M. Schulz Two-dimensional simulation of fluid–structure interaction using lattice–Boltzmann methods Comput. Struct 2001 2031 2037

[53] I. Kukavica, A. Tuffaha, M. Ziane Strong solutions for a fluid structure interaction system Adv. Differ. Equ 2010 231 254

[54] U. Kuttler, W. Wall Fixed-point fluid-structure interaction solvers with dynamic relaxation Computat. Mech 2008 61 72

[55] J. Lequeurre Existence of strong solutions for a system coupling the Navier–Stokes equations and a damped wave equation J. Math. Fluid Mech 2013 249 271

[56] M. Lukáčová-Medvid’Ová, G. Rusnáková, A. Hundertmark-Zaušková Kinematic splitting algorithm for fluid–structure interaction in hemodynamics Comput. Methods Appl. Mech. Eng 2013 83 106

[57] A. Mikelić, Rough boundaries and wall laws, in Vol. 5. Qualitative Properties of Solutions to Partial Differential Equations, edited by P.K. Feireisl and J. Malek. Lecture Notes of Nečas Center for Mathematical Modeling (2009) 103–134.

[58] A. Mikelić, V. Nečasová, M. Neuss-Radu Effective slip law for general viscous flows over an oscillating surface Math. Methods Appl. Sci 2013 2086 2100

[59] B. Muha, S. Canić Existence of a weak solution to a nonlinear fluid–structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls Arch. Rational Mech. Anal 2003 1 50

[60] B. Muha, S. Čanić Existence of a weak solution to a nonlinear fluid–structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls Arch. Rational Mech. Anal 2013 919 968

[61] B. Muha, S. Canic A nonlinear, 3D fluid–structure interaction problem driven by the time-dependent dynamic pressure data: a constructive existence proof Commun. Inform. Syst 2013 357 397

[62] B. Muha, S. Čanić Existence of a solution to a fluid–multi-layered-structure interaction problem J. Differ. Equ 2014 658 706

[63] B. Muha, S. Čanić Existence of a weak solution to a fluid–structure interaction problem with the Navier slip boundary condition J. Differ. Equ 2016 8550 8589

[64] B. Muha, Z. Tutek Note on evolutionary free piston problem for Stokes equations with slip boundary conditions Commun. Pure Appl. Anal 2014 1629 1639

[65] J. Neustupa and P. Penel, A weak solvability of the Navier–Stokes equation with Navier’s boundary condition around a ball striking the wall, in Advances in Mathematical Fluid Mechanics. Springer, Berlin (2010) 385–407.

[66] F. Nobile, C. Vergara Partitioned algorithms for fluid–structure interaction problems in haemodynamics Milan J. Math 2012 443 467

[67] O. Oyekole, C. Trenchea, M. Bukač A second-order in time approximation of fluid–structure interaction problem SIAM J. Numer. Anal 2018 590 613

[68] K. Park, C. Felippa, J. Deruntz Stabilization of staggered solution procedures for fluid-structure interaction analysis Computat. Methods Fluid-Struct. Interact. Probl 1977 51

[69] C. Peskin Numerical analysis of blood flow in the heart J. Computat. Phys 1977 220 252

[70] S. Piperno, C. Farhat Partitioned procedures for the transient solution of coupled aeroelastic problems. Part II. Energy transfer analysis and three-dimensional applications Comput. Methods Appl. Mech. Eng. 2001 3147 3170

[71] G. Planas, F. Sueur On the viscous incompressible fluid + rigid body” system with Navier conditions Ann. Inst. Henri Poincaré. Anal. Non Linéaire 2014 55 80

[72] M. Potomkin, V. Gyrya, I. Aranson, L. Berlyand Collision of microswimmers in viscous fluid Phys. Rev. E 2013 053005

[73] A. Quarteroni, M. Tuveri, A. Veneziani Computational vascular fluid dynamics: problems, models and methods. Survey article Comput. Visual. Sci. 2000 163 197

[74] J.-P. Raymond, M. Vanninathan A fluid–structure model coupling the Navier–Stokes equations and the Lamé system J. Math. Pures Appl 2012 546 596

[75] J. San Martín, V. Starovoitov, M. Tucsnak Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid Arch. Rational Mech. Anal 2002 113 147

[76] C. Wang Strong solutions for the fluid–solid systems in a 2-D domain Asymptotic Anal 2004 263 306

[77] Y. Yu, H. Baek, G. Karniadakis Generalized fictitious methods for fluid–structure interactions: analysis and simulations J. Computat. Phys 2013 317 346

Cité par Sources :