Controlling oscillator coherence by multiple delay feedback
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 6.

Voir la notice de l'article provenant de la source EDP Sciences

We consider the implementation of a weak feedback with two delay times for controlling the coherence of both deterministic chaotic and stochastic oscillators. This control strategy is revealed to allow one to decrease or enhance the coherence, which is quantified by the phase diffusion constant, by 2–3 orders of magnitude without destruction of the chaotic regime, which is by an order of magnitude more than one can achieve with a single delay time. Within the framework of the phase reduction, which is a rough approximation for the chaotic oscillators and rigorous for the stochastic ones, an analytical theory of the effect is constructed.
DOI : 10.1051/mmnp/2020049

Denis S. Goldobin 1, 2 ; Elizaveta V. Shklyaeva 2

1 Institute of Continuous Media Mechanics, Ural Branch of RAS, Perm 614013, Russia.
2 Theoretical Physics Department, Perm State University, Perm 614990, Russia.
@article{MMNP_2021_16_a1,
     author = {Denis S. Goldobin and Elizaveta V. Shklyaeva},
     title = {Controlling oscillator coherence by multiple delay feedback},
     journal = {Mathematical modelling of natural phenomena},
     eid = {6},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2020049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020049/}
}
TY  - JOUR
AU  - Denis S. Goldobin
AU  - Elizaveta V. Shklyaeva
TI  - Controlling oscillator coherence by multiple delay feedback
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020049/
DO  - 10.1051/mmnp/2020049
LA  - en
ID  - MMNP_2021_16_a1
ER  - 
%0 Journal Article
%A Denis S. Goldobin
%A Elizaveta V. Shklyaeva
%T Controlling oscillator coherence by multiple delay feedback
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020049/
%R 10.1051/mmnp/2020049
%G en
%F MMNP_2021_16_a1
Denis S. Goldobin; Elizaveta V. Shklyaeva. Controlling oscillator coherence by multiple delay feedback. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 6. doi : 10.1051/mmnp/2020049. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020049/

[1] A. Ahlborn, U. Parlitz Stabilizing Unstable Steady States Using Multiple Delay Feedback Control Phys. Rev. Lett 2004 264101

[2] A. Ahlborn, U. Parlitz Controlling dynamical systems using multiple delay feedback control Phys. Rev. E 2005 016206

[3] A. Ahlborn, U. Parlitz Laser stabilization with multiple-delay feedback control Opt. Lett 2006 465 467

[4] A. Amann, E.W. Hooton An odd-number limitation of extended time-delayed feedback control in autonomous systems Phil. Trans. R. Soc. A 2013 20120463

[5] S. Boccaletti, E. Allaria, R. Meucci Experimental control of coherence of a chaotic oscillator Phys. Rev. E 2004 066211

[6] N. Bogoliubov, Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon Breach, Paris (1961).

[7] O. D’Huys, Th. Jungling, W. Kinzel Stochastic switching in delay-coupled oscillators Phys. Rev. E 2014 032918

[8] A.V. Dolmatova, D.S. Goldobin, A. Pikovsky Synchronization of coupled active rotators by common noise Phys. Rev. E 2017 062204

[9] V.V. Emel’Yanov, N.M. Ryskin, O.S. Khavroshin Suppression of Self-Modulation in the Self-Oscillator with Delayed Feedback Using the Method for Chaos Control J. Commun. Tech. Electron 2009 685 691

[10] B. Fiedler, V. Flunkert, M. Georgi, P. Hövel, E. Schöll Refuting the odd number limitation of time-delayed feedback control Phys. Rev. Lett 2007 114101

[11] K. Furutsu On the statistical theory of electromagnetic waves in a fluctuating media J. Res. Natl. Bur. Stand 1963 303 323

[12] C.W. Gardiner, Handbook of Stochastic Methods. Springer, Berlin (1983).

[13] D.S. Goldobin Anharmonic resonances with recursive delay feedback Phys. Lett. A 2011 3410 3414

[14] D.S. Goldobin Uncertainty principle for control of ensembles of oscillators driven by common noise EPJST 2014 677 685

[15] D.S. Goldobin, A.V. Dolmatova Interplay of the mechanisms of synchronization by common noise and global coupling for a general class of limit-cycle oscillators Commun. Nonlinear Sci. Numer. Simulat 2019 94 108

[16] D.S. Goldobin, L.S. Klimenko Resonances and multistability in a Josephson junction connected to a resonator Phys. Rev. E 2018 022203

[17] D. Goldobin, M. Rosenblum, A. Pikovsky Controlling oscillator coherence by delayed feedback Phys. Rev. E 2003 061119

[18] D. Goldobin, M. Rosenblum, A. Pikovsky Coherence of noisy oscillators with delayed feedback Phys. A 2003 124 128

[19] D.S. Goldobin, J.-N. Teramae, H. Nakao, G.B. Ermentrout Dynamics of Limit-Cycle Oscillator Subject to General Noise Phys. Rev. Lett 2010 154101

[20] Y.M. Guznov, Y.Y. Danilov, S.V. Kuzikov, Y.V. Novozhilova, A.S. Shevchenko, N.I. Zaitsev, N.M. Ryskin Megawatt-power Ka-band gyroklystron oscillator with external feedback Appl. Phys. Lett 2013 173505

[21] B. Kralemann, L. Cimponeriu, M. Rosenblum, A. Pikovsky, R. Mrowka Uncovering interaction of coupled oscillators from data Phys. Rev. E 2007 055201

[22] E.N. Lorenz Deterministic Nonperiodic Flow J. Atmos. Sci 1963 130 141

[23] H. Nakajima On analytical properties of delayed feedback control of chaos Phys. Lett. A 1997 207 210

[24] H. Nakao, J.-N. Teramae, D.S. Goldobin, Y. Kuramoto Effective long-time phase dynamics of limit-cycle oscillators driven by weak colored noise Chaos 2010 033126

[25] Y. Novikov Functionals and the random force method in turbulence theory Sov. Phys. JETP 1965 1290 1294

[26] A.H. Pawlik, A. Pikovsky Control of oscillators coherence by multiple delayed feedback Phys. Lett. A 2006 181 185

[27] A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge Univ. Press, Cambridge (2001).

[28] A.V. Pimenova, D.S. Goldobin Coherence of Noisy Oscillators with Delayed Feedback Inducing Multistability J. Phys.: Conf. Ser 2016 012045

[29] K. Pyragas Continuous control of chaos by self-controlling feedback Phys. Lett. A 1992 421 428

[30] K. Pyragas Control of chaos via extended delay feedback Phys. Lett. A 1995 323 330

[31] N.M. Ryskin, O.S. Khavroshin Suppressing Self-Modulation Instability in a Delayed Feedback Traveling Wave Tube Oscillator Using Controlling Chaos Technique IEEE Transactions on Electron Devices 2008 662 667

[32] A.E. Samoilova, A. Nepomnyashchy Feedback control of Marangoni convection in a thin film heated from below J. Fluid Mech 2019 573 590

[33] A.E. Samoilova, A. Nepomnyashchy Nonlinear feedback control of Marangoni wave patterns in a thin film heated from below Physica D: Nonlinear Phenomena 2020 132627

[34] R.L. Stratonovich, Topics in the Theory of Random Noise. Gordon and Breach, New York (1967).

[35] J.-N. Teramae, H. Nakao, G.B. Ermentrout Stochastic Phase Reduction for a General Class of Noisy Limit Cycle Oscillators Phys. Rev. Lett 2009 194102

[36] K. Yoshimura, K. Arai Phase Reduction of Stochastic Limit Cycle Oscillators Phys. Rev. Lett 2008 154101

Cité par Sources :