Voir la notice de l'article provenant de la source EDP Sciences
Denis S. Goldobin 1, 2 ; Elizaveta V. Shklyaeva 2
@article{MMNP_2021_16_a1, author = {Denis S. Goldobin and Elizaveta V. Shklyaeva}, title = {Controlling oscillator coherence by multiple delay feedback}, journal = {Mathematical modelling of natural phenomena}, eid = {6}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2020049}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020049/} }
TY - JOUR AU - Denis S. Goldobin AU - Elizaveta V. Shklyaeva TI - Controlling oscillator coherence by multiple delay feedback JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020049/ DO - 10.1051/mmnp/2020049 LA - en ID - MMNP_2021_16_a1 ER -
%0 Journal Article %A Denis S. Goldobin %A Elizaveta V. Shklyaeva %T Controlling oscillator coherence by multiple delay feedback %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020049/ %R 10.1051/mmnp/2020049 %G en %F MMNP_2021_16_a1
Denis S. Goldobin; Elizaveta V. Shklyaeva. Controlling oscillator coherence by multiple delay feedback. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 6. doi : 10.1051/mmnp/2020049. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020049/
[1] Stabilizing Unstable Steady States Using Multiple Delay Feedback Control Phys. Rev. Lett 2004 264101
,[2] Controlling dynamical systems using multiple delay feedback control Phys. Rev. E 2005 016206
,[3] Laser stabilization with multiple-delay feedback control Opt. Lett 2006 465 467
,[4] An odd-number limitation of extended time-delayed feedback control in autonomous systems Phil. Trans. R. Soc. A 2013 20120463
,[5] Experimental control of coherence of a chaotic oscillator Phys. Rev. E 2004 066211
, ,[6] N. Bogoliubov, Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon Breach, Paris (1961).
[7] Stochastic switching in delay-coupled oscillators Phys. Rev. E 2014 032918
, ,[8] Synchronization of coupled active rotators by common noise Phys. Rev. E 2017 062204
, ,[9] Suppression of Self-Modulation in the Self-Oscillator with Delayed Feedback Using the Method for Chaos Control J. Commun. Tech. Electron 2009 685 691
, ,[10] Refuting the odd number limitation of time-delayed feedback control Phys. Rev. Lett 2007 114101
, , , ,[11] On the statistical theory of electromagnetic waves in a fluctuating media J. Res. Natl. Bur. Stand 1963 303 323
[12] C.W. Gardiner, Handbook of Stochastic Methods. Springer, Berlin (1983).
[13] Anharmonic resonances with recursive delay feedback Phys. Lett. A 2011 3410 3414
[14] Uncertainty principle for control of ensembles of oscillators driven by common noise EPJST 2014 677 685
[15] Interplay of the mechanisms of synchronization by common noise and global coupling for a general class of limit-cycle oscillators Commun. Nonlinear Sci. Numer. Simulat 2019 94 108
,[16] Resonances and multistability in a Josephson junction connected to a resonator Phys. Rev. E 2018 022203
,[17] Controlling oscillator coherence by delayed feedback Phys. Rev. E 2003 061119
, ,[18] Coherence of noisy oscillators with delayed feedback Phys. A 2003 124 128
, ,[19] Dynamics of Limit-Cycle Oscillator Subject to General Noise Phys. Rev. Lett 2010 154101
, , ,[20] Megawatt-power Ka-band gyroklystron oscillator with external feedback Appl. Phys. Lett 2013 173505
, , , , , ,[21] Uncovering interaction of coupled oscillators from data Phys. Rev. E 2007 055201
, , , ,[22] Deterministic Nonperiodic Flow J. Atmos. Sci 1963 130 141
[23] On analytical properties of delayed feedback control of chaos Phys. Lett. A 1997 207 210
[24] Effective long-time phase dynamics of limit-cycle oscillators driven by weak colored noise Chaos 2010 033126
, , ,[25] Functionals and the random force method in turbulence theory Sov. Phys. JETP 1965 1290 1294
[26] Control of oscillators coherence by multiple delayed feedback Phys. Lett. A 2006 181 185
,[27] A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge Univ. Press, Cambridge (2001).
[28] Coherence of Noisy Oscillators with Delayed Feedback Inducing Multistability J. Phys.: Conf. Ser 2016 012045
,[29] Continuous control of chaos by self-controlling feedback Phys. Lett. A 1992 421 428
[30] Control of chaos via extended delay feedback Phys. Lett. A 1995 323 330
[31] Suppressing Self-Modulation Instability in a Delayed Feedback Traveling Wave Tube Oscillator Using Controlling Chaos Technique IEEE Transactions on Electron Devices 2008 662 667
,[32] Feedback control of Marangoni convection in a thin film heated from below J. Fluid Mech 2019 573 590
,[33] Nonlinear feedback control of Marangoni wave patterns in a thin film heated from below Physica D: Nonlinear Phenomena 2020 132627
,[34] R.L. Stratonovich, Topics in the Theory of Random Noise. Gordon and Breach, New York (1967).
[35] Stochastic Phase Reduction for a General Class of Noisy Limit Cycle Oscillators Phys. Rev. Lett 2009 194102
, ,[36] Phase Reduction of Stochastic Limit Cycle Oscillators Phys. Rev. Lett 2008 154101
,Cité par Sources :