Voir la notice de l'article provenant de la source EDP Sciences
Jagdev Singh 1 ; Devendra Kumar 2 ; Dumitru Baleanu 3, 4
@article{MMNP_2021_16_a13, author = {Jagdev Singh and Devendra Kumar and Dumitru Baleanu}, title = {New aspects of fractional {Bloch} model associated with composite fractional derivative}, journal = {Mathematical modelling of natural phenomena}, eid = {10}, publisher = {mathdoc}, volume = {16}, year = {2021}, doi = {10.1051/mmnp/2020046}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020046/} }
TY - JOUR AU - Jagdev Singh AU - Devendra Kumar AU - Dumitru Baleanu TI - New aspects of fractional Bloch model associated with composite fractional derivative JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020046/ DO - 10.1051/mmnp/2020046 LA - en ID - MMNP_2021_16_a13 ER -
%0 Journal Article %A Jagdev Singh %A Devendra Kumar %A Dumitru Baleanu %T New aspects of fractional Bloch model associated with composite fractional derivative %J Mathematical modelling of natural phenomena %D 2021 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020046/ %R 10.1051/mmnp/2020046 %G en %F MMNP_2021_16_a13
Jagdev Singh; Devendra Kumar; Dumitru Baleanu. New aspects of fractional Bloch model associated with composite fractional derivative. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 10. doi : 10.1051/mmnp/2020046. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020046/
[1] Modeling some real phenomena by fractional differential equations Math. Methods Appl. Sci 2016 4846 4855
, ,[2] Sumudu transform and the solution of integral equation of convolution type Int. J. Math. Educ. Sci. Technol 2001 906 910
[3] Fractional kinetic equations associated with incomplete I-functions Fractal Fract 2020 19
, , ,[4] Analytical investigations of the Sumudu transform and applications to integral production equations Math. Probl. Eng 2003 103 118
, ,[5] Sumudu transform fundamental properties investigations and applications Int. J. Stoch. Anal 2006 091083
,[6] Fractional modified Kawahara equation with Mittag-Leffler law Chaos Solitons Fract 2020 109508
, , , ,[7] Linear models of dissipation whose Q is almost frequency independent. Part II Geophys. J. Int 1967 529 539
[8] Application of Sumudu transform in Schrödinger equation occurring in Quantum mechanics Appl. Math. Sci 2010 2843 2850
,[9] Numerical Simulation of a fractional model of temperature distribution and heat flux in the semi infinite solid Alexandria Eng. J 2016 87 91
, ,[10] Fractional Langevin equation with anti-periodic boundary conditions Chaos Solitons Fract 2018 332 337
,[11] Analytical study for fractional order mathematical model of concentration of Ca2+ in astrocytes cell with a composite fractional derivative J. Multiscale Model 2020 20500055
, , ,[12] Analytical solution of generalized space-time fractional advection-dispersion equation via coupling of Sumudu and Fourier transforms To appear in: Front. Phys. 2019 1 6
, ,[13] Numerical computation of fractional Kersten-Krasil’shchik coupled KdV-mKdV System arising in multi-component plasmas AIMS Math 2020 2346 2368
, , ,[14] E.M. Haacke, R.W. Brown, M.R. Thompson and R. Venkatesan, Magnetic Resonance Imaging: Physical Principles and Sequence Design. Wiley, New York (1999).
[15] R. Hilfer,Applications of Fractional Calculus in Physics. World Scientific Publishing Company, Singapore-New Jersey-Hong Kong (2000) 87–130.
[16] Linear viscoelastic responses and constitutive equations in terms of fractional operators with non-singular kernels Eur. Phys. J. Plus 2019 283
[17] A generalization of truncated M-fractional derivative and applications to fractional differential equations Appl. Math. Nonlinear Sci 2020 171 188
,[18] On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law Math. Methods Appl. Sci 2020 443 457
, ,[19] Anomalous diffusion expressed through fractional order differential operatorsin the Bloch-Torrey equation J. Magn Reson 2008 255 270
, , ,[20] Solving the fractional order Bloch equation Wiley. Inter. Sci 2009 16 23
, ,[21] K.S. Miller and B. Ross, An Introduction to the fractional Calculus and Fractional Differential Equations. Wiley, New York (1993).
[22] Modelling and numerical analysis of fractional order Bloch equations Comput. Math. Appl 2011 341 356
[23] Fractional dynamics of an infection model with time-varying drug exposure J. Computat. Nonlinear Dyn 2018 090904
,[24] A.S.V. Ravi Kanth and N. Garg, Analytical solutions of the Bloch equation via fractional operators with non-singular kernels, in: Applied Mathematics and Scientific Computing. Trends in Mathematics, edited by B. Rushi Kumar et al. Springer Nature Switzerland (2019). https://doi.org/10.1007/978-3-030-01123-9_5.
[25] Fractional diffusion equation with a generalized Riemann–Liouville time fractional derivative J. Phys. A: Math. Theor 2011 255203
, ,[26] An efficient numerical algorithm for the fractional Drinfeld-Sokolov-Wilson equation Appl. Math. Comput 2018 12 24
, , ,[27] A new analysis of fractional fish farm model associated with Mittag-Leffler type Kernel Int. J. Biomath 2020 2050010
, ,[28] An efficient computational technique for local fractional Fokker Planck equation Physica A 2020 124525
, ,[29] Investigation of the fractional coupled viscous Burgers’ equation involving Mittag-Leffler kernel Physica A 2019 121 126
, , ,[30] Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions Integral Trans. Special Funct 2010 797 814
, ,[31] Fractional Klein-Gordon-Schrödinger equations with Mittag-Leffler memory Chin. J. Phys 2020 65 78
, , , ,[32] Sumudu transform – a new integral transform to solve differential equations and control engineering problems Math. Eng. Ind 1998 319 329
[33] B.J. West, M. Bolgona, P. Grigolini, Physics of Fractal Operators. Springer-Verlag, New York (2003).
[34] A new integral transform operator for solving the heat-diffusion problem Appl. Math. Lett 2017 193 197
[35] Nonlinear regularized long-wave models with a new integral transformation applied to the fractionalderivative with power and Mittag-Leffler kernel Adv Differ Equ 2020 367
,[36] European vanilla option pricing model of fractional order without singular Kernel Fract. Fract 2018 3
,[37] Characterizations of two different fractional operators without singular kernel MMNP 2019 302
[38] Numerical solutions with linearization techniques of the fractional Harry dym equation Appl. Math. Nonlinear Sci 2019 35 42
,[39] Numerical simulation of fractional Bloch equations J. Comput. Appl. Math 2014 635 651
, , ,Cité par Sources :