New aspects of fractional Bloch model associated with composite fractional derivative
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 10.

Voir la notice de l'article provenant de la source EDP Sciences

This paper studies a fractional Bloch equation pertaining to Hilfer fractional operator. Bloch equation is broadly applied in physics, chemistry, nuclear magnetic resonance (NMR), magnetic resonance imaging (MRI) and many more. The sumudu transform technique is applied to obtain the analytic solutions for nuclear magnetization M = (Mx, My, Mz). The general solution of nuclear magnetization M is shown in the terms of Mittag-Leffler (ML) type function. The influence of order and type of Hilfer fractional operator on nuclear magnetization M is demonstrated in graphical form. The study of Bloch equation with composite fractional derivative reveals the new features of Bloch equation. The discussed fractional Bloch model provides crucial and applicable results to introduce novel information in scientific and technological fields.
DOI : 10.1051/mmnp/2020046

Jagdev Singh 1 ; Devendra Kumar 2 ; Dumitru Baleanu 3, 4

1 Department of Mathematics, JECRC University, Jaipur 303905, Rajasthan, India.
2 Department of Mathematics, University of Rajasthan, Jaipur-302004, Rajasthan, India.
3 Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, Eskisehir Yolu 29. Km, Yukarıyurtcu Mahallesi Mimar Sinan Caddesi No: 4 06790, Etimesgut, Turkey.
4 Institute of Space Sciences, Magurele-Bucharest, Romania.
@article{MMNP_2021_16_a13,
     author = {Jagdev Singh and Devendra Kumar and Dumitru Baleanu},
     title = {New aspects of fractional {Bloch} model associated with composite fractional derivative},
     journal = {Mathematical modelling of natural phenomena},
     eid = {10},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2020046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020046/}
}
TY  - JOUR
AU  - Jagdev Singh
AU  - Devendra Kumar
AU  - Dumitru Baleanu
TI  - New aspects of fractional Bloch model associated with composite fractional derivative
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020046/
DO  - 10.1051/mmnp/2020046
LA  - en
ID  - MMNP_2021_16_a13
ER  - 
%0 Journal Article
%A Jagdev Singh
%A Devendra Kumar
%A Dumitru Baleanu
%T New aspects of fractional Bloch model associated with composite fractional derivative
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020046/
%R 10.1051/mmnp/2020046
%G en
%F MMNP_2021_16_a13
Jagdev Singh; Devendra Kumar; Dumitru Baleanu. New aspects of fractional Bloch model associated with composite fractional derivative. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 10. doi : 10.1051/mmnp/2020046. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020046/

[1] R. Almeida, N.R.O. Bastos, M.T.T. Monteiro Modeling some real phenomena by fractional differential equations Math. Methods Appl. Sci 2016 4846 4855

[2] M.A. Asiru Sumudu transform and the solution of integral equation of convolution type Int. J. Math. Educ. Sci. Technol 2001 906 910

[3] M.K. Bansal, P. Harjule, D. Kumar, J. Singh Fractional kinetic equations associated with incomplete I-functions Fractal Fract 2020 19

[4] F.B.M. Belgacem, A.A. Karaballi, S.L. Kalla Analytical investigations of the Sumudu transform and applications to integral production equations Math. Probl. Eng 2003 103 118

[5] F.B.M. Belgacem, A.A. Karaballi Sumudu transform fundamental properties investigations and applications Int. J. Stoch. Anal 2006 091083

[6] S. Bhatter, A. Mathur, D. Kumar, K.S. Nisar, J. Singh Fractional modified Kawahara equation with Mittag-Leffler law Chaos Solitons Fract 2020 109508

[7] M. Caputo Linear models of dissipation whose Q is almost frequency independent. Part II Geophys. J. Int 1967 529 539

[8] V.B.L. Chaurasia, J. Singh Application of Sumudu transform in Schrödinger equation occurring in Quantum mechanics Appl. Math. Sci 2010 2843 2850

[9] A. Choudhary, D. Kumar, J. Singh Numerical Simulation of a fractional model of temperature distribution and heat flux in the semi infinite solid Alexandria Eng. J 2016 87 91

[10] H. Fazli, J.J. Nieto Fractional Langevin equation with anti-periodic boundary conditions Chaos Solitons Fract 2018 332 337

[11] V. Gill, Y. Singh, D. Kumar, J. Singh Analytical study for fractional order mathematical model of concentration of Ca2+ in astrocytes cell with a composite fractional derivative J. Multiscale Model 2020 20500055

[12] V. Gill, J. Singh, Y. Singh Analytical solution of generalized space-time fractional advection-dispersion equation via coupling of Sumudu and Fourier transforms To appear in: Front. Phys. 2019 1 6

[13] A. Goswami, Sushila, J. Singh, D. Kumar Numerical computation of fractional Kersten-Krasil’shchik coupled KdV-mKdV System arising in multi-component plasmas AIMS Math 2020 2346 2368

[14] E.M. Haacke, R.W. Brown, M.R. Thompson and R. Venkatesan, Magnetic Resonance Imaging: Physical Principles and Sequence Design. Wiley, New York (1999).

[15] R. Hilfer,Applications of Fractional Calculus in Physics. World Scientific Publishing Company, Singapore-New Jersey-Hong Kong (2000) 87–130.

[16] J. Hristov Linear viscoelastic responses and constitutive equations in terms of fractional operators with non-singular kernels Eur. Phys. J. Plus 2019 283

[17] E. Ilhan, I.O. Kıymazb A generalization of truncated M-fractional derivative and applications to fractional differential equations Appl. Math. Nonlinear Sci 2020 171 188

[18] D. Kumar, J. Singh, D. Baleanu On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law Math. Methods Appl. Sci 2020 443 457

[19] R.L. Magin, O. Abdullah, D. Baleanu, X.J. Zhou Anomalous diffusion expressed through fractional order differential operatorsin the Bloch-Torrey equation J. Magn Reson 2008 255 270

[20] R. Magin, X. Feng, D. Baleanu Solving the fractional order Bloch equation Wiley. Inter. Sci 2009 16 23

[21] K.S. Miller and B. Ross, An Introduction to the fractional Calculus and Fractional Differential Equations. Wiley, New York (1993).

[22] I. Petras Modelling and numerical analysis of fractional order Bloch equations Comput. Math. Appl 2011 341 356

[23] C.M.A. Pinto, A.R.M. Carvalho Fractional dynamics of an infection model with time-varying drug exposure J. Computat. Nonlinear Dyn 2018 090904

[24] A.S.V. Ravi Kanth and N. Garg, Analytical solutions of the Bloch equation via fractional operators with non-singular kernels, in: Applied Mathematics and Scientific Computing. Trends in Mathematics, edited by B. Rushi Kumar et al. Springer Nature Switzerland (2019). https://doi.org/10.1007/978-3-030-01123-9_5.

[25] T. Sandev, R. Metzler, Z. Tomovski Fractional diffusion equation with a generalized Riemann–Liouville time fractional derivative J. Phys. A: Math. Theor 2011 255203

[26] J. Singh, D. Kumar, D. Baleanu, S. Rathore An efficient numerical algorithm for the fractional Drinfeld-Sokolov-Wilson equation Appl. Math. Comput 2018 12 24

[27] J. Singh, D. Kumar, D. Baleanu A new analysis of fractional fish farm model associated with Mittag-Leffler type Kernel Int. J. Biomath 2020 2050010

[28] J. Singh, H.K. Jassim, D. Kumar An efficient computational technique for local fractional Fokker Planck equation Physica A 2020 124525

[29] T.A. Sulaiman, M. Yavuz, H. Bulut, H.M. Baskonus Investigation of the fractional coupled viscous Burgers’ equation involving Mittag-Leffler kernel Physica A 2019 121 126

[30] Z. Tomovski, R. Hilfer, H.M. Srivastava Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions Integral Trans. Special Funct 2010 797 814

[31] P. Veeresha, D.G. Prakasha, J. Singh, D. Kumar, D. Baleanu Fractional Klein-Gordon-Schrödinger equations with Mittag-Leffler memory Chin. J. Phys 2020 65 78

[32] G.K. Watugala Sumudu transform – a new integral transform to solve differential equations and control engineering problems Math. Eng. Ind 1998 319 329

[33] B.J. West, M. Bolgona, P. Grigolini, Physics of Fractal Operators. Springer-Verlag, New York (2003).

[34] X.J. Yang A new integral transform operator for solving the heat-diffusion problem Appl. Math. Lett 2017 193 197

[35] M. Yavuz, T Abdeljawad Nonlinear regularized long-wave models with a new integral transformation applied to the fractionalderivative with power and Mittag-Leffler kernel Adv Differ Equ 2020 367

[36] M. Yavuz, N. Özdemir European vanilla option pricing model of fractional order without singular Kernel Fract. Fract 2018 3

[37] M. Yavuz Characterizations of two different fractional operators without singular kernel MMNP 2019 302

[38] A. Yoku, S. Gülbahar Numerical solutions with linearization techniques of the fractional Harry dym equation Appl. Math. Nonlinear Sci 2019 35 42

[39] Q. Yu, F. Liu, I. Turner, K. Burrage Numerical simulation of fractional Bloch equations J. Comput. Appl. Math 2014 635 651

Cité par Sources :