Voir la notice de l'article provenant de la source EDP Sciences
Arthur Charpentier 1 ; Romuald Elie 2 ; Mathieu Laurière 3 ; Viet Chi Tran 2
@article{10_1051_mmnp_2020045,
author = {Arthur Charpentier and Romuald Elie and Mathieu Lauri\`ere and Viet Chi Tran},
title = {COVID-19 pandemic control: balancing detection policy and lockdown intervention under {ICU} sustainability},
journal = {Mathematical modelling of natural phenomena},
eid = {57},
publisher = {mathdoc},
volume = {15},
year = {2020},
doi = {10.1051/mmnp/2020045},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020045/}
}
TY - JOUR AU - Arthur Charpentier AU - Romuald Elie AU - Mathieu Laurière AU - Viet Chi Tran TI - COVID-19 pandemic control: balancing detection policy and lockdown intervention under ICU sustainability JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020045/ DO - 10.1051/mmnp/2020045 LA - en ID - 10_1051_mmnp_2020045 ER -
%0 Journal Article %A Arthur Charpentier %A Romuald Elie %A Mathieu Laurière %A Viet Chi Tran %T COVID-19 pandemic control: balancing detection policy and lockdown intervention under ICU sustainability %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020045/ %R 10.1051/mmnp/2020045 %G en %F 10_1051_mmnp_2020045
Arthur Charpentier; Romuald Elie; Mathieu Laurière; Viet Chi Tran. COVID-19 pandemic control: balancing detection policy and lockdown intervention under ICU sustainability. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 57. doi: 10.1051/mmnp/2020045
[1] An optimal isolation policy for an epidemic J. Appl. Probab. 1973 247 62
[2] Optimal immunisation policies for epidemics Adv. Appl. Probab. 1974 494 511
[3] , , , A multi-risk SIR model with optimally targeted lockdown NBER Working Paper 27102 2020 1 38
[4] , Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model. Biosystems 2014 20 44
[5] Asymptomatic coronavirus infection: MERS-CoV and SARS-CoV-2 (COVID-19) Travel Med. Infect. Dis. 101608 2020
[6] , , , , , , , Seasonality and immunity to laboratory-confirmed seasonal coronaviruses (HCoV-NL63, HCoV-OC43, and HCoV-229E): results from the flu watch cohort study Wellcome Open Res. 2020 52
[7] , , A simple planning problem for COVID-19 lockdown Natl. Bureau Eco. Res. 2020 1 35
[8] R. Anderson and R. May, Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1991).
[9] , , , , , , , Lecture Notes in Mathematics 2019
[10] E. Barclay, The US doesn’t just need to flatten the curve. it needs to “raise the line”. Available from https://www.vox.com/2020/4/7/21201260/coronavirus-usa-chart-mask-shortage-ventilators-flatten-the-curve (2020).
[11] Optimal control of deterministic epidemics Optim. Control Appl. Methods 2000 269 285
[12] D.W. Berger, K.F. Herkenhoff and S. Mongey, An SEIR infectious disease model with testing and conditional quarantine. Workingpaper 26901. National Bureau of Economic Research, Inc. (2020).
[13] J. Bernstein, A.W. Richter and N. Throckmorton, Covid-19: A view from the labor market. Federal Reserve Bank of Dallas Working Paper 2010 (2020).
[14] Optimal control of a deterministic epidemic Math. Biosci. 1977 165 174
[15] , , , , , , , , , , , , , , , The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak Science 395 400
[16] , , , , , , MERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015 Emerg. Infect. Dis. 2017 1079 1084
[17] , , A stochastic SIR model with contact-tracing: large population limits and statistical inference J. Biol. Dyn. 2008 391 414
[18] , A theory of production Am. Eco. Rev. 1928 139 165
[19] Vaccine designers take first shots at COVID-19 Science 2020 14 16
[20] , Countries test tactics in ‘war’ against COVID-19 Science 2020 1287 1288
[21] A.R. da Cruz, R.T.N. Cardoso and R.H.C. Takahashi, Multiobjective dynamic optimization of vaccination campaigns using convex quadratic approximation local search, in Evolutionary Multi-Criterion Optimization, edited by R.H.C. Takahashi, K. Deb, E.F. Wanner and S. Greco. Springer, Berlin (2011) 404–417.
[22] COVID-19: identifying and isolating asymptomatic people helped eliminate virus in Italian village Br. Med. J. 2020
[23] , , On the definition and the computation of the basic reproduction ratio r0 in models for infectious diseases in heterogeneous populations J. Math. Biol. 1990 365 382
[24] O. Diekmann, H. Heesterbeek and T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton Series in Theoretical and Computational Biology. Princeton University Press, New Jersey (2012).
[25] R. Djidjou-Demasse, Y. Michalakis, M. Choisy, M.T. Sofonea and S. Alizon, Optimal COVID-19 epidemic control until vaccine deployment. Preprint medRxiv 20049189v1 (2020).
[26] L.D. Domenico, G. Pullano, C. Sabbatini, P.-Y. Boëlle and V. Colizza, Expected impact of lockdown in Ile-de-France and possible exit strategies. Preprint medrxiv 20063933v1 (2020).
[27] , Contact tracing and disease control Proc. R. Soc. London B 2003 2565 2571
[28] M.S. Eichenbaum, S. Rebelo and M. Trabandt, The macroeconomics of epidemics. Working Paper 26882. National Bureau of Economic Research (2020).
[29] Finite time Merton strategy under drawdown constraint: a viscosity solution approach Appl. Math. Optim. 2008 411 431
[30] R. Elie, E. Hubert and G. Turinici, Contact rate epidemic control of COVID-19: an equilibrium view. Preprint arXiv:2004.08221 (2020).
[31] T. Evgeniou, M. Fekom, A. Ovchinnikov, R. Porcher, C. Pouchol and N. Vayatis, Epidemic models for personalised COVID-19 isolation and exit policies using clinical risk predictions. Preprint medRxiv 20074054v1 (2020).
[32] N. Ferguson, D. Laydon, G. Nedjati-Gilani, N. Imai, K. Ainslie, M. Baguelin, S. Bhatia, A. Boonyasiri, Z. Cucunubá, G. Cuomo-Dannenburg, A. Dighe, I. Dorigatti, H. Fu, K. Gaythorpe, W. Green, A. Hamlet, W. Hinsley, L.C. Okell, S. van Elsland and A.C. Ghani, Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College COVID-19 Response Team 9 (2020).
[33] S. Flaxman, S. Mishra, A. Gandy, J. Unwin, H. Coupland, a.Z. Thomas A Mellan, T. Berah, A. Ghani, C.A. Donnelly, S. Riley, L.C. Okell, M.A.C. Vollmer, N.M. Ferguson and S. Bhatt, Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in 11 European countries. Imperial College COVID-19 Response Team 13 (2020).
[34] C. Gelardi, Colonialism made puerto rico vulnerable to coronavirus catastrophe. Available from: https://www.thenation.com/article/politics/puerto-rico-coronavirus/ (2020).
[35] , , , , Estimated effectiveness of symptom and risk screening to prevent the spread of COVID-19. eLife 2020 e55570
[36] Some results on optimal control applied to epidemics Math. Biosci. 1988 125 158
[37] S.K. Gudi, K. Undela, R. Venkataraman, U.V. Mateti, M. Chhabra, S. Nyamagoud and K.K. Tiwari, Knowledge and beliefs towards universal safety precautions to flatten the curve during novel coronavirus disease (nCOVID-19) pandemic among general public in India: Explorations from a national perspective. Preprint medRxiv 20047126v1 (2020).
[38] V. Guerrieri, G. Lorenzoni, L. Straub and I. Werning, Macroeconomic implications of COVID-19: Can negative supply shocks cause demand shortages? Working Paper 26918, National Bureau of Economic Research (2020).
[39] , Optimal control of epidemics with limited resources J. Math. Biol. 2011 423 451
[40] , , , , , Temporal dynamics in viral shedding and transmissibility of COVID-19 Nat. Med. 2020 672 5
[41] , , , , , , , , , , , Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts Lancet Glob. Health 2020 488 496
[42] , , , , , , , , , , , , , , , , , , , , , Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts Lancet Glob. Health 2020 e488 e496
[43] , The impact of contact tracing in clustered populations PLoS Comput. Biol. 2010 e1000721
[44] L. Huang, Y. Shi, B. Gong, L. Jiang, X. Liu, J. Yang, J. Tang, C. You, Q. Jiang, B. Long, T. Zeng, M. Luo, F. Zeng, F. Zeng, S. Wang, X. Yang and Z. Yang, Blood single cell immune profiling reveals the interferon-MAPK pathway mediated adaptive immune response for COVID-19. Preprint medRxiv 20033472v1 (2020).
[45] , Optimal control for SIR epidemic model: A two treatments strategy 2008 Mediterranean Conference on Control and Automation - Conference Proceedings, MED’08 2008 842 847
[46] , , Review of the Clinical Characteristics of Coronavirus Disease 2019 (COVID-19) J. Gen. Inter. Med. 2020 1545 9
[47] , A contribution to the mathematical theory of epidemics Proc. R. Soc. London 1927 700 721
[48] , , Mathematical model of transmission dynamics and optimal control strategiesfor 2009 A/H1N1 influenza in the Republic of Korea J. Theor. Biol. 2017 74 85
[49] , , Infectious disease control using contact tracing in random and scale-free networks J. R. Soc. Interface 2013 55 62
[50] S.M. Kissler, C. Tedijanto, M. Lipsitch and Y. Grad, Social distancing strategies for curbing the COVID-19 epidemic. Preprint medRxiv 20041079v1 (2020).
[51] , , Epidemiological benchmarks of the COVID-19 outbreak control in China after Wuhan’s lockdown: A modelling study with an empirical approach SSRN Electron. J. 2020 3543589
[52] A. Kucharski, P. Klepac, A. Conlan, S. Kissler, M. Tang, H. Fry, J. Gog, J. Edmunds and C.C. working group, Effectiveness of isolation, testing, contact tracing and physical distancing on reducing transmission of SARS-CoV-2 in different settings. Preprint medRxiv 20077024v1 (2020).
[53] , , , , , , Early dynamics of transmission and control of COVID-19: a mathematical modelling study Lancet Infect. Dis. 2020 553 58
[54] , Vaccination and treatment as control interventions in an infectious disease model with their cost optimization Commun. Nonlinear Sci. Numer. Simul. 2017 334 343
[55] , , , , , , , Quarantine-generated phase transition in epidemic spreading Phys. Rev. E 2011 026102
[56] S. Lai, N.W. Ruktanonchai, L. Zhou, O. Prosper, W. Luo, J.R. Floyd, A. Wesolowski, M. Santillana, C. Zhang, X. Du, H. Yu and A.J. Tatem, Effect of non-pharmaceutical interventions for containing the COVID-19 outbreak in China. Preprint medRxiv 20029843v1 (2020).
[57] , , , , , , , , , , , , , , , , , , , , , , Detection of Covid-19 in children in early January 2020 in Wuhan, China New Engl. J. Med. 2020 1370 1371
[58] P. Magal and G. Webb, Predicting the number of reported and unreported cases for the COVID-19 epidemic in South Korea, Italy, France and Germany. Preprint medRxiv 20040154v1 (2020).
[59] , , , , , Social contacts and mixing patterns relevant to the spread of infectious diseases PLoS Med. 2008 e74
[60] , , , , , , , , , , Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19) Int. J. Infect. Dis. 2020 154 155
[61] A normative perspective on discounting health outcomes J. Health Serv. Res. Policy 2013 186 189
[62] , , Use of quarantine in the control of SARS in Singapore Am. J. Infect. Control 2005 252 257
[63] M.G. Pedersen and M. Meneghini, A simple method to quantify country-specific effects of COVID-19 containment measures. Preprint medRxiv 20057075v1 (2020).
[64] COVID-19 mass testing facilities could end the epidemic rapidly BMJ 2020
[65] , Optimal COVID-19 quarantine and testing policies EIEF Working Papers Series 2004 2020
[66] L. Pontryagin, G. Boltyanskii, R. Gamkrelidze and E. Mishchenko, Mathematical Theory of Optimal Processes, CRC Press, New York (1964).
[67] , , Community mitigation guidelines to prevent pandemic influenza - United States MMWR 2017 1 34
[68] , , Critical supply shortages - the need for ventilators and personal protective equipment during the COVID-19 pandemic New Engl. J. Med. 2020 e41
[69] L. Roques, E. Klein, J. Papaix, A. Sar and S. Soubeyrand, Effect of a one-month lockdown on the epidemic dynamics of COVID-19 in France. Preprint medRxiv 20074054v1 (2020).
[70] J. Roux, C. Massonnaud and P. Crépey, COVID-19: One-month impact of the French lockdown on the epidemic burden. Available from: https://www.ehesp.fr/wp-content/uploads/2020/04/Impact-Confinement-EHESP-20200322v1-1.pdf (2020).
[71] A. Sachdeva and A. Sheth, COVID-19, panic now!! a call to action because the numbers are deceptive. SSRN 3563419 (2020).
[72] , , , , , , , , , , , , COVID-19 epidemic in Switzerland: on the importance of testing, contact tracing and isolation Swiss medical weekly 2020 w20225
[73] H. Salje, C.T. Kiem, N. Lefrancq, N. Courtejoie, P. Bosetti, J. Paireau, A. Andronico, N. Hoze, J. Richet, C.-L. Dubost, Y.L. Strat, J. Lessler, D.L. Bruhl, A. Fontanet, L. Opatowski, P.-Y. Boelle and S. Cauchemez, Estimating the burden of SARS-CoV-2 in France. Available from: https://hal-pasteur.archives-ouvertes.fr/pasteur-02548181 (2020).
[74] Optimal quarantine programmes for controlling an epidemic spread J. Operat. Res. Soc. 1978 265 268
[75] , Optimal control in epidemiology Ann. Operat. Res. 2017 55 71
[76] Lessons from the history of quarantine, from plague to influenza A Emerg. Infect. Dis. 2013 254 259
[77] , , , , , Inferring R0 in emerging epidemics-the effect of common population structure is small J. R. Soc. Interf. 2016 20160288
[78] , A comparison of the discounted utility model and hyperbolic discounting models in the case of social and private intertemporal preferences for health J. Eco. Behav. Organ. 2002 79 96
[79] , , Control of epidemics by vaccination Proceedings of the 2005, American Control Conference 2005 985 990
[80] , , Using Data on Social Contacts to Estimate Age-specific Transmission Parameters for Respiratory-spread Infectious Agents Am. J. Epidemiol. 2006 936 944
[81] S. Wong, A. Vaughan, C. Quilty-Harper and L. Liverpool, Covid-19 news: Us not involved in global WHO plan to tackle pandemic. New Scientist April 24, 2020.
[82] World Health Organization, Coronavirus disease 2019 (COVID-19). Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (2020).
[83] , Optimal and sub-optimal quarantine and isolation control in SARS epidemics Math. Comput. Model. 2008 235 45
[84] , , , Follow-up of the asymptomatic patients with SARS-CoV-2 infection Clin. Microbiol. Infect. 2020 957 959
Cité par Sources :