Voir la notice de l'article provenant de la source EDP Sciences
Fabio Bagagiolo 1 ; Marta Zoppello 2
@article{10_1051_mmnp_2020023,
author = {Fabio Bagagiolo and Marta Zoppello},
title = {Hysteresis and controllability of affine driftless systems: some case studies},
journal = {Mathematical modelling of natural phenomena},
eid = {55},
publisher = {mathdoc},
volume = {15},
year = {2020},
doi = {10.1051/mmnp/2020023},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020023/}
}
TY - JOUR AU - Fabio Bagagiolo AU - Marta Zoppello TI - Hysteresis and controllability of affine driftless systems: some case studies JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020023/ DO - 10.1051/mmnp/2020023 LA - en ID - 10_1051_mmnp_2020023 ER -
%0 Journal Article %A Fabio Bagagiolo %A Marta Zoppello %T Hysteresis and controllability of affine driftless systems: some case studies %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020023/ %R 10.1051/mmnp/2020023 %G en %F 10_1051_mmnp_2020023
Fabio Bagagiolo; Marta Zoppello. Hysteresis and controllability of affine driftless systems: some case studies. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 55. doi: 10.1051/mmnp/2020023
[1] A. Agrachev, U. Boscain and D. Barilari, Introduction to Riemannian and Sub-Riemannian geometry, https://www.imj-prg.fr/~davide.barilari/ABB-v2.pdf (2019).
[2] , , , Can magnetic multilayers propel artificial micro-swimmers mimicking, sperm cells Soft Robot 2015 117 128
[3] , , , Purcell magneto-elastic swimmer controlled by an external magnetic field IFAC PapersOnLine 2017 4120 4125
[4] An infinite horizon optimal control problem for some switching systems Discr. Contin. Dyn. Syst. Ser. B 2001 443 462
[5] On the controllability of the semilinear heat equation with hysteresis Physica B 2012 1401 1403
[6] , Hybrid thermostatic approximations of junctions for some optimal control problems on networks SIAM J. Control Optim 2019 2415 2442
[7] , Hysteresis in filtration through porous media Z. Anal. Anwendungen 2000 977 997
[8] , , , Game theoretic decentralized feedback controls in Markov jump processes J. Optim. Theory Appl 2017 704 726
[9] , , Swimming by switching Meccanica 2017 3499 3511
[10] Impulsive control of Lagrangian systems and locomotion in fluids Discr. Contin. Dyn. Syst 2008 1 35
[11] , Weak differentiability of scalar hysteresis operators Discr. Contin. Dyn. Syst 2015 2405 2421
[12] M. Brokate and J. Sprekels, Hysteresis and Phase Transitions. Springer-Verlag, New York (1996).
[13] , , Discontinuities and hysteresis in quantized average consensus Automatica 2011 1916 1928
[14] Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung Math. Ann 1939 98 105
[15] , , , Necessary and sufficient stability conditions for equilibria of linear SISO feedbacks with a play operator IFAC PapersOnLine 2016 211 216
[16] , , , Optimal control of the sweeping process Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 2012 117 159
[17] J.M. Coron, Control and Nonlinearity. AMS, Providence (2007).
[18] , Correction to: Control and controllability of PDEs with hysteresis Appl. Math. Optim. 2020
[19] A macroeconomic model with hysteresis in foreign trade Metroeconomica 2001 449 473
[20] , BV-norm continuity of sweeping processes driven by a set with constant shape J. Differ. Equ 2016 5875 5899
[21] M. Krasnosel’skiǐ and A. Pokrovskiǐ, Systems with Hysteresis. Springer-Verlag, Berlin (1989).
[22] , Generalized variational inequalities J. Convex Anal 2002 159 183
[23] J.P. Laumond, S. Sekhavat and F. Lamiraux, Guidelines in nonholonomic motion planning formobile robots, in Robot Motion Planning and Control, edited by J.-P. Laumond. Vol. 229 of Lecture Notes in Information and Control Sciences. Springer, Berlin (1998).
[24] D. Liberzon, Switching in Systems and Control. Birkhäuser, Boston (2003).
[25] , , Integral control of infinite-dimensional systems in presence of hysteresis: an input-output approach ESAIM: COCV 2007 458 483
[26] I.D. Mayergoyz, Mathematical Models of Hysteresis. Springer-Verlag, New York (1991).
[27] R. Montgomery, Nonholonomic motion planning and Gauge theory, in Nonholonomic Motion Planning, edited by Z. Li, J.F. Canny. Vol. 192 of The Springer International Series in Engineering and Computer Science (Robotics: Vision, Manipulation and Sensors). Springer, Boston (1993) 343–377.
[28] Evolution problem associated with a moving convex set in a Hilbert space J. Differ. Equ 1977 347 374
[29] On a class of scalar variational inequalities with measure data Appl. Anal 2009 1739 1753
[30] BV solutions of rate independent variational inequalities Ann. Sc. Norm. Super. Pisa Cl. Sci 2011 269 315
[31] , , Stability analysis and stabilization of systems with input backlash IEEE Trans. Automat. Contr 2014 488 494
[32] A. Visintin, Differential Models of Hysteresis. Springer-Verlag, Berlin (1994).
Cité par Sources :