Voir la notice de l'article provenant de la source EDP Sciences
Grégory Dumont 1 ; Jacques Henry 2 ; Carmen Oana Tarniceriu 3, 4
@article{10_1051_mmnp_2020017,
author = {Gr\'egory Dumont and Jacques Henry and Carmen Oana Tarniceriu},
title = {A theoretical connection between the {Noisy} {Leaky} integrate-and-fire and the escape rate models: {The} non-autonomous case},
journal = {Mathematical modelling of natural phenomena},
eid = {59},
publisher = {mathdoc},
volume = {15},
year = {2020},
doi = {10.1051/mmnp/2020017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020017/}
}
TY - JOUR AU - Grégory Dumont AU - Jacques Henry AU - Carmen Oana Tarniceriu TI - A theoretical connection between the Noisy Leaky integrate-and-fire and the escape rate models: The non-autonomous case JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020017/ DO - 10.1051/mmnp/2020017 LA - en ID - 10_1051_mmnp_2020017 ER -
%0 Journal Article %A Grégory Dumont %A Jacques Henry %A Carmen Oana Tarniceriu %T A theoretical connection between the Noisy Leaky integrate-and-fire and the escape rate models: The non-autonomous case %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020017/ %R 10.1051/mmnp/2020017 %G en %F 10_1051_mmnp_2020017
Grégory Dumont; Jacques Henry; Carmen Oana Tarniceriu. A theoretical connection between the Noisy Leaky integrate-and-fire and the escape rate models: The non-autonomous case. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 59. doi: 10.1051/mmnp/2020017
[1] Lapique’s introduction of the integrate-and-fire modelneuron (1907) Brain Res. Bull 1999 303 304
[2] S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics. Kluwer Academic Publishers, Dordrecht (2000).
[3] , Lapicque’s 1907 paper: from frogs to integrate-and-fire Biol. Cybern 2007 341 349
[4] Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons J. Comput. Neurosci 2000 183 208
[5] , Fast global oscillations in networks of integrate-and-fire neurons with low firing rates Neural Comput 1999 1621 1671
[6] N. Brunel and V. Hakim, Fokker-planck equation. Encyclopedia of Computational Neuroscience. Springer, New York (2015), 1222–1226, 2015.
[7] , Quantitative investigations of electrical nerve excitation treated as polarization Biol. Cybern. 2007 341 349
[8] A review of the integrate-and-fire neuron model: I. homogeneous synaptic input Biological Cybernetics 2006 1 19
[9] A review of the integrate-and-fire neuron model: II. inhomogeneous synaptic input and network properties Biol. Cybern 2006 97 112
[10] , , Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states J. Math. Neurosci 2011 7
[11] , Analysis and numerical solver for excitatory-inhibitory networks with delay and refractory periods ESAIM: M2AN 2018 1733 1761
[12] , Asymptotic behaviour of neuron population models structured by elapsed-time Nonlinearity 2019 464 495
[13] , , , Qualitative properties of solutions for the noisy integrate and fire model in computational neuroscience Nonlinearity 2015 9
[14] , , , Classical solutions for a nonlinear fokker-planck equation arising incomputational neuroscience Commun. Partial Differ. Equ 2013 385 409
[15] , , , Microscopic approach of a time elapsed neural model Math. Models Methods Appl. Sci 2015 2669 2719
[16] , , , Global solvability of a networked integrate-and-fire model of McKean-Vlasov type Ann. Appl. Probab. 2015 2096 2133
[17] N. Dokuchaev, On recovering parabolic diffusions from their time averages. Preprint arXiv: 1609.01890 (2017).
[18] , Synchronization of an excitatory integrate-and-fire neural network Bull. Math. Biol 2013 629 48
[19] , , Noisy threshold in neuronal models: connections with the noisy leaky integrate - and - firemodel J. Math. Biol 2016 1413 1436
[20] , , Theoretical connections between neuronal models corresponding to different expressions of noise J. Theor. Biol 2016 31 41
[21] , , A stochastic-field description of finite-size spiking neural networks PLOS Comput. Biol 2017 1 34
[22] G. Dumont and P. Gabriel, The mean-field equation of a leaky integrate-and-fire neural network: measure solutions and steady states. Preprint arXiv: 1710.05596 (2020).
[23] , , Noise in the nervous system Nat. Rev. Neurosci 2008 292 303
[24] C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences. Springer, Berlin (1996).
[25] , Associative memory in a network of ’spiking’ neurons Network 1992 139 164
[26] W. Gerstner and W. Kistler, Spiking neuron models. Cambridge University Press, Cambridge (2002).
[27] M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics. CNR Applied Mathematics Monographs, Vol. 7. Giardini editori e stampatori, Pisa (1995).
[28] Sur la théorie du mouvement brownien C. R. Acad. Sci. (Paris) 1908 530 533
[29] Neuronal noise Scholarpedia 2013 1618
[30] , Temporal correlations in stochastic networks of spiking neurons Neural Comput 2002 1321 1372
[31] , Weak and strong connectivity regimes for a general time elapsed neuron network model J. Stat. Phys 2018 77 98
[32] , , Dynamics of a structured neuron population Nonlinearity 2009 23 55
[33] , , Relaxation and self-sustained oscillations in the time elapsed neuron network model SIAM J. Appl. Math 2013 1260 1279
[34] , Noise in integrate-and-fire neurons: from stochastic input to escape rates Neural Comput 2000 367 384
[35] A. Renart, N. Brunel and X.-J Wang, Mean-Field Theory of Irregularly Spking Neuronal Populations and Working Memory in Recurrent Cortical Networks, Chapter 15 in Computational Neuroscience: A comprehensive Approach, Mathematical Biology and Medicine Series. Chapmann/CRC, Boca Raton (2004).
[36] Noise in biology Rep. Prog. Phys 2014 026601
[37] G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York (1985).
Cité par Sources :