Voir la notice de l'article provenant de la source EDP Sciences
@article{10_1051_mmnp_2020013,
author = {Martin Brokate},
title = {Newton and {Bouligand} derivatives of the scalar play and stop operator},
journal = {Mathematical modelling of natural phenomena},
eid = {51},
publisher = {mathdoc},
volume = {15},
year = {2020},
doi = {10.1051/mmnp/2020013},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020013/}
}
TY - JOUR AU - Martin Brokate TI - Newton and Bouligand derivatives of the scalar play and stop operator JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020013/ DO - 10.1051/mmnp/2020013 LA - en ID - 10_1051_mmnp_2020013 ER -
Martin Brokate. Newton and Bouligand derivatives of the scalar play and stop operator. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 51. doi: 10.1051/mmnp/2020013
[1] H. Bauschke and P. Combettes, Convex analysis and monotone operator theory in Hilbert spaces. Springer, Berlin (2011).
[2] J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer, New York (2000).
[3] , Weak Differentiability of Scalar Hysteresis Operators Discrete Contin. Dyn. Syst 2015 2405 2421
[4] M. Brokate and J. Sprekels, Hysteresis and Phase Transitions. Springer, New York (1996).
[5] Sensitivity analysis and optimal control of obstacle-type evolution variational inequalities SIAM J. Control Opt 2019 192 218
[6] I.V. Girsanov, Lectures on Mathematical Theory of Extremum Problems. Springer, Berlin (1972).
[7] , PDE-constrained optimization subject to pointwise constraints on the control, the state, and its derivatives SIAM J. Opt 2009 1133 1156
[8] , , The primal-dual active set strategy as a semismooth Newton method SIAM J. Opt 2003 865 888
[9] S. Hu and N.S. Papageorgiu, Handbook of multivalued analysis, volume I: Theory. Kluwer, South Holland (1997).
[10] K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications. SIAM Series Advances in Design and Control. SIAM, Philadelphia, (2008).
[11] , , , , , An operator-hysterant Dokl. Akad. Nauk SSSR 1970 34 37
[12] , , , , , Soviet Math. Dokl. 1970 29 33
[13] P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakkōtosho, Tokyo (1996).
[14] A. Mielke and T. Roubíček, Rate-Independent Systems. Springer, Berlin (2015).
[15] Contrôle dans les inéquations variationelles elliptiques J. Funct. Anal 1976 130 185
[16] N.S. Papageorgiu and S.T. Kyritsi-Yiallourou, Handbook of applied analysis. Springer, Berlin (2009).
[17] Semismooth Newton methods for operator equations in function spaces SIAM J. Optim 2003 805 841
[18] M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. SIAM, Philadelphia, (2011).
[19] A. Visintin, Differential Models of Hysteresis. Springer, Berlin (1994).
Cité par Sources :