Voir la notice de l'article provenant de la source EDP Sciences
Malay Banerjee 1 ; Alexey Tokarev 2 ; Vitaly Volpert 2, 3, 4
@article{10_1051_mmnp_2020012,
author = {Malay Banerjee and Alexey Tokarev and Vitaly Volpert},
title = {Immuno-epidemiological model of two-stage epidemic growth},
journal = {Mathematical modelling of natural phenomena},
eid = {27},
publisher = {mathdoc},
volume = {15},
year = {2020},
doi = {10.1051/mmnp/2020012},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020012/}
}
TY - JOUR AU - Malay Banerjee AU - Alexey Tokarev AU - Vitaly Volpert TI - Immuno-epidemiological model of two-stage epidemic growth JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020012/ DO - 10.1051/mmnp/2020012 LA - en ID - 10_1051_mmnp_2020012 ER -
%0 Journal Article %A Malay Banerjee %A Alexey Tokarev %A Vitaly Volpert %T Immuno-epidemiological model of two-stage epidemic growth %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020012/ %R 10.1051/mmnp/2020012 %G en %F 10_1051_mmnp_2020012
Malay Banerjee; Alexey Tokarev; Vitaly Volpert. Immuno-epidemiological model of two-stage epidemic growth. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 27. doi: 10.1051/mmnp/2020012
[1] , , Influenza activity in France, season 2018–2019 BEH 2019 552 563
[2] , , , , Modelling the dynamics of virus infection and immune response in space and time Int. J. Parallel Emerg. Distrib. Syst 2019 341 355
[3] , , How does within-host dynamics affect population-level dynamics? Insights from an immuno-epidemiological model of malaria Math. Methods Appl. Sci 2017 6424 6450
[4] , , Epidemic dynamics and host immune response: a nested approach J. Math. Biol 2015 399 435
[5] Influenza season 2019–2020: early situation assessment. World Health Organization, (2019).
[6] M. Kochanczyk, F. Grabowski and T. Lipniacki, Impact of the contact and exclusion rates on the spread of COVID-19 pandemic. Preprint medRxiv (2020). https://doi.org/10.1101/2020.03.13.20035485.
[7] A. Lachmann, Correcting under-reported COVID-19 case numbers. Preprint medRxiv (2020). https://doi.org/10.1101/2020.03.14.20036178.
[8] , , , , , , , , , , , Coronavirus infections and immune responses J. Med. Virol 2020 424 432
[9] , , , Understanding unreported cases in the COVID-19 epidemic outbreak in Wuhan, China, and the importance of major public health interventions Biology 2020 50
[10] , , , , , , , , , A large-scale immuno-epidemiological simulation of influenza A epidemics BMC Public Health 2014 1019
[11] , , , Initial infectious dose dictates the innate, adaptive, and memory responses to influenza in the respiratory tract J. Leukoc. Biol 2012 107 121
[12] J. Murray, Mathematical Biology, Vol. 1. Springer-Verlag, Heidelberg (2002).
[13] , , , , Influenza infectious dose may explain the high mortality of the second and third wave of 1918–1919 influenza pandemic PLoS ONE 2010 e11655
[14] , A simple model of pathogen-immune dynamics including specific and non-specific immunity Math. Biosci 2008 73 80
[15] Resultat de la surveillance de la grippe et du syndrome grippal en Belgique.
[16] Summary of UK surveillance of influenza and other seasonal respiratory illnesses. 29 August 2019 – Week 35 report (up to week 34 data). PHE National Influenza Report (2020).
[17] , , Immuno-epidemiological modeling of HIV-1 predicts high heritability of the set-point virus load, while selection for CTL escape dominates virulence evolution PLOS Comput. Biol 2014 e1003899
[18] , , On a quarantine model of coronavirus infection and data analysis MMNP 2020 24
[19] Worldometer, Available from: https://www.worldometers.info/coronavirus/ (2020).
Cité par Sources :