Voir la notice de l'article provenant de la source EDP Sciences
Olaf Klein 1 ; Daniele Davino 2 ; Ciro Visone 3
@article{10_1051_mmnp_2020009,
author = {Olaf Klein and Daniele Davino and Ciro Visone},
title = {On forward and inverse uncertainty quantification for models involving hysteresis operators},
journal = {Mathematical modelling of natural phenomena},
eid = {53},
publisher = {mathdoc},
volume = {15},
year = {2020},
doi = {10.1051/mmnp/2020009},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020009/}
}
TY - JOUR AU - Olaf Klein AU - Daniele Davino AU - Ciro Visone TI - On forward and inverse uncertainty quantification for models involving hysteresis operators JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020009/ DO - 10.1051/mmnp/2020009 LA - en ID - 10_1051_mmnp_2020009 ER -
%0 Journal Article %A Olaf Klein %A Daniele Davino %A Ciro Visone %T On forward and inverse uncertainty quantification for models involving hysteresis operators %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020009/ %R 10.1051/mmnp/2020009 %G en %F 10_1051_mmnp_2020009
Olaf Klein; Daniele Davino; Ciro Visone. On forward and inverse uncertainty quantification for models involving hysteresis operators. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 53. doi: 10.1051/mmnp/2020009
[1] , , , The generalized Prandtl-Ishlinskii model: relation with the Preisach nonlinearity and inverse compensation error 2014 American Control Conference (ACC) June 4 -6, 2014. Portland, Oregon, USA 2014
[2] , , , Comparison of Prandtl–Ishlinskii and Preisach modeling for smart devices applications Phys. B: Condens. Matter 2016 155 159
[3] M. Brokate and J. Sprekels, Hysteresis and phase transitions. Springer, New York (1996).
[4] , , Fully coupled modeling of magneto-mechanical hysteresis through ‘thermodynamic’ compatibility Smart Mater. Struct. 2013 9
[5] , Rate-independent memory in magneto-elastic materials Discrete Continuous Dyn. Syst. Ser. S 2015 649 691
[6] , Outwards pointing hysteresis operators and asymptotic behaviour of evolution equations Nonlinear Anal. Real World Appl. 2003 755 785
[7] , Asymptotic behaviour of evolution equations involving outwards pointing hysteresis operators Phys. B 2004 53 58
[8] M. Krasnosel’skiǐ and A. Pokrovskii, Systems with Hysteresis. Russian edition: Nauka, Moscow, 1983. Springer-Verlag, Heidelberg (1989).
[9] P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Vol. 8 of Gakuto Int. Series Math. Sci. Appl. Gakkōtosho, Tokyo (1996).
[10] W. Liu, A Geostatistical Approach toward Shear Wave Velocity Modeling and Uncertainty Quantification in Seismic Hazard. Dissertations, Clemson University (2018).
[11] , , , Stochastic nonparametric models of uncertain hysteretic oscillators AIAA J. 2006 2319 2330
[12] I.D. Mayergoyz, Mathematical Models of Hysteresis and their Applications. 2nd edn. Elsevier, Amsterdam (2003).
[13] , A-posteriori identifiability of the maxwell slip model of hysteresis IFAC Proc. 2011 10788 10793
[14] R.C. Smith, Uncertainty quantification: theory, implementation, and applications, Vol. 12 of Computational Science Engineering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2014).
[15] T.J. Sullivan, Introduction to uncertainty quantification, Vol. 63 of Texts in Applied Mathematics. Springer, Cham (2015).
[16] , A hysteretic multiscale formulation for validating computational models of heterogeneous structures J. Strain Anal. Eng. Des. 2015 46 62
[17] A. Visintin, Differential Models of Hysteresis, Vol. 111 of Applied Mathematical Sciences. Springer, New York (1994).
[18] , Exact invertible hysteresis models based on play operators Phys. B: Condens. Matter 2004 148 152
[19] Stochastic responses of multi-degree-of-freedom uncertain hysteretic systems 2011
Cité par Sources :