Voir la notice de l'article provenant de la source EDP Sciences
Kh.A. Khachatryan 1 ; A.Zh. Narimanyan 2 ; A.Kh. Khachatryan 3
@article{MMNP_2020_15_a30, author = {Kh.A. Khachatryan and A.Zh. Narimanyan and A.Kh. Khachatryan}, title = {On mathematical modelling of temporal spatial spread of epidemics}, journal = {Mathematical modelling of natural phenomena}, eid = {6}, publisher = {mathdoc}, volume = {15}, year = {2020}, doi = {10.1051/mmnp/2019056}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019056/} }
TY - JOUR AU - Kh.A. Khachatryan AU - A.Zh. Narimanyan AU - A.Kh. Khachatryan TI - On mathematical modelling of temporal spatial spread of epidemics JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019056/ DO - 10.1051/mmnp/2019056 LA - en ID - MMNP_2020_15_a30 ER -
%0 Journal Article %A Kh.A. Khachatryan %A A.Zh. Narimanyan %A A.Kh. Khachatryan %T On mathematical modelling of temporal spatial spread of epidemics %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019056/ %R 10.1051/mmnp/2019056 %G en %F MMNP_2020_15_a30
Kh.A. Khachatryan; A.Zh. Narimanyan; A.Kh. Khachatryan. On mathematical modelling of temporal spatial spread of epidemics. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 6. doi : 10.1051/mmnp/2019056. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019056/
[1] Discussion: the Kermack-McKendrick epidemic threshold theorem Bull. Math. Biol 1951 3 32
[2] R.M. Anderson and R.M. May, Population Biology of Infections. Spring Verlag, Berlin, Heidelberg, New York (1982).
[3] Deterministic epidemic waves of critical velocity Math. Proc. Cambridge Philos. Soc 1976 315 330
,[4] Modelling and Role of dynamics in epidemiology Int. J. Comput. Sci. Math 2013 1 10
, ,[5] Input-to-state stability of interconnected hybrid systems Automatica 2013 1068 1074
,[6] Limiting behavior in an epidemic model J. Non. Anal. Theory Math. Appl 1977 459 470
[7] Thresholds and Travelling Waves for the Geographical Spread of Infection J. Math. Biol 1978 109 130
[8] Note on the derivatives with respect to a parameter of the solutions of system of differential equations Ann. Math 1919 292 296
[9] A contribution to the mathematical theory of epidemics Proc. R. Soc. London A 1927 700 721
,[10] On solvability of some nonlinear integral equations in problems of spread of epidemics Proc. Steklov Inst. Math 2019 271 287
,[11] A.N. Kolmogorov and S.V. Fomin, Elements of theory functions and functional analyses, Moscow, Nauka, 1981 (in Russian).
[12] L. Rass and J. Radcliffe, Special deterministic epidemics. American Mathematical Society (2003) 273p.
[13] On solvability of one class of nonlinear integral equations in spread epidemic problem Trans. Moscow Math. Soc 2019 113 131
,[14] A reaction-diffusion model for a deterministic-diffusive epidemic J. Math. Anal. Appl 1981 150 161
Cité par Sources :