On mathematical modelling of temporal spatial spread of epidemics
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 6.

Voir la notice de l'article provenant de la source EDP Sciences

In the present work a generalized epidemic model containing a system of integral-differential equations is described. Using different transformations the system is reduced to a single nonlinear multidimensional integral equation. For the obtained equation the existence and uniqueness results are proved. Based on theoretical convergence results several application examples are presented with corresponding numerical results.
DOI : 10.1051/mmnp/2019056

Kh.A. Khachatryan 1 ; A.Zh. Narimanyan 2 ; A.Kh. Khachatryan 3

1 Institute of Mathematics of National Academy of Sciences, Yerevan, Armenia.
2 Department of Mathematics and Computer Science, University of Bremen, Germany.
3 Department of Mathematics, Armenian National Agrarian University, Yerevan, Armenia.
@article{MMNP_2020_15_a30,
     author = {Kh.A. Khachatryan and A.Zh. Narimanyan and A.Kh. Khachatryan},
     title = {On mathematical modelling of temporal spatial spread of epidemics},
     journal = {Mathematical modelling of natural phenomena},
     eid = {6},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2019056},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019056/}
}
TY  - JOUR
AU  - Kh.A. Khachatryan
AU  - A.Zh. Narimanyan
AU  - A.Kh. Khachatryan
TI  - On mathematical modelling of temporal spatial spread of epidemics
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019056/
DO  - 10.1051/mmnp/2019056
LA  - en
ID  - MMNP_2020_15_a30
ER  - 
%0 Journal Article
%A Kh.A. Khachatryan
%A A.Zh. Narimanyan
%A A.Kh. Khachatryan
%T On mathematical modelling of temporal spatial spread of epidemics
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019056/
%R 10.1051/mmnp/2019056
%G en
%F MMNP_2020_15_a30
Kh.A. Khachatryan; A.Zh. Narimanyan; A.Kh. Khachatryan. On mathematical modelling of temporal spatial spread of epidemics. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 6. doi : 10.1051/mmnp/2019056. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019056/

[1] R.M. Anderson Discussion: the Kermack-McKendrick epidemic threshold theorem Bull. Math. Biol 1951 3 32

[2] R.M. Anderson and R.M. May, Population Biology of Infections. Spring Verlag, Berlin, Heidelberg, New York (1982).

[3] C. Atkinson, G.E. Reuter Deterministic epidemic waves of critical velocity Math. Proc. Cambridge Philos. Soc 1976 315 330

[4] V.H. Badshah, P. Porwal, V. Tiwazi Modelling and Role of dynamics in epidemiology Int. J. Comput. Sci. Math 2013 1 10

[5] S. Dashkovskiy, M. Kosmykov Input-to-state stability of interconnected hybrid systems Automatica 2013 1068 1074

[6] O. Diekmann Limiting behavior in an epidemic model J. Non. Anal. Theory Math. Appl 1977 459 470

[7] O. Diekmann Thresholds and Travelling Waves for the Geographical Spread of Infection J. Math. Biol 1978 109 130

[8] T.H. Gronwall Note on the derivatives with respect to a parameter of the solutions of system of differential equations Ann. Math 1919 292 296

[9] W. Kermack, A. Mckendrick A contribution to the mathematical theory of epidemics Proc. R. Soc. London A 1927 700 721

[10] A.Kh. Khachatryan, Kh.A. Khachatryan On solvability of some nonlinear integral equations in problems of spread of epidemics Proc. Steklov Inst. Math 2019 271 287

[11] A.N. Kolmogorov and S.V. Fomin, Elements of theory functions and functional analyses, Moscow, Nauka, 1981 (in Russian).

[12] L. Rass and J. Radcliffe, Special deterministic epidemics. American Mathematical Society (2003) 273p.

[13] A.G. Sergeev, Kh.A. Khachatryan On solvability of one class of nonlinear integral equations in spread epidemic problem Trans. Moscow Math. Soc 2019 113 131

[14] G. Webb A reaction-diffusion model for a deterministic-diffusive epidemic J. Math. Anal. Appl 1981 150 161

Cité par Sources :