Voir la notice de l'article provenant de la source EDP Sciences
Thomas D. Lewin 1 ; Philip K. Maini 1 ; Eduardo G. Moros 2 ; Heiko Enderling 2, 3 ; Helen M. Byrne 2
@article{10_1051_mmnp_2019039,
author = {Thomas D. Lewin and Philip K. Maini and Eduardo G. Moros and Heiko Enderling and Helen M. Byrne},
title = {A three phase model to investigate the effects of dead material on the growth of avascular tumours},
journal = {Mathematical modelling of natural phenomena},
eid = {22},
publisher = {mathdoc},
volume = {15},
year = {2020},
doi = {10.1051/mmnp/2019039},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019039/}
}
TY - JOUR AU - Thomas D. Lewin AU - Philip K. Maini AU - Eduardo G. Moros AU - Heiko Enderling AU - Helen M. Byrne TI - A three phase model to investigate the effects of dead material on the growth of avascular tumours JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019039/ DO - 10.1051/mmnp/2019039 LA - en ID - 10_1051_mmnp_2019039 ER -
%0 Journal Article %A Thomas D. Lewin %A Philip K. Maini %A Eduardo G. Moros %A Heiko Enderling %A Helen M. Byrne %T A three phase model to investigate the effects of dead material on the growth of avascular tumours %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019039/ %R 10.1051/mmnp/2019039 %G en %F 10_1051_mmnp_2019039
Thomas D. Lewin; Philip K. Maini; Eduardo G. Moros; Heiko Enderling; Helen M. Byrne. A three phase model to investigate the effects of dead material on the growth of avascular tumours. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 22. doi: 10.1051/mmnp/2019039
[1] , Cell adhesion mechanisms and stress relaxation in the mechanics of tumours Biomech. Model. Mechanobiol 2009 397 413
[2] , A mixture theory for the genesis of residual stresses in growing tissues I: a general formulation SIAM J. Appl. Math 2005 1261 1284
[3] , A mixture theory for the genesis of residual stresses in growing tissues II: solutions to the biphasic equations for a multicell spheroid SIAM J. Appl. Math 2005 447 467
[4] , , The impact of O2 availability on human cancer Nat. Rev. Cancer 2008 967 975
[5] , , The role of cell–cell interactions in a two-phase model for a vascular tumour growth J. Math. Biol. 2002 125 152
[6] , The unique physiology of solid tumors: opportunities (and problems) for cancer therapy Cancer Res. 1998 1408 1416
[7] , Necrosis and apoptosis: distinct cell loss mechanisms in a mathematical model of avascular tumour growth J. Theor. Med 1998 223 235
[8] , , , A two-phase model of solid tumour growth Appl. Math. Lett. 2003 567 573
[9] , Angiogenesis in cancer and other diseases Nature 2000 249 257
[10] , , Reaction and diffusion on growing domains: scenarios for robust pattern formation Bull. Math. Biol. 1999 1093 1120
[11] , , , , Migration and internalization of cells and polystyrenemicrospheres in tumor cell spheroids Exp. Cell Res. 1982 201 209
[12] , Radiation-induced cell death mechanisms Tumor Biol. 2010 363 372
[13] Self-regulation of growth in three dimensions J. Exp. Med. 1973 745 753
[14] Models for the growth of a solid tumor by diffusion Stud. Appl. Math. 1972 317 340
[15] On the growth and stability of cell cultures and solid tumors J. Theor. Biol. 1976 229 242
[16] , , , A method for estimating the oxygen consumption rate in multicellular tumour spheroids. J. Roy. Soc. Interface 2014 20131124
[17] , The hallmarks of cancer Cell 2000 57 70
[18] , Hallmarks of cancer: the next generation Cell 2011 646 674
[19] , , , , , Multicellular tumor spheroids: an underestimated tool is catching up again J. Biotechnol 2010 3 15
[20] , Multiphase modelling of vascular tumour growth in two spatial dimensions J. Theor. Biol. 2013 70 89
[21] , Tumour dynamics and necrosis: surface tension and stability IMA J. Math. Appl. Med. Biol 2001 131 158
[22] , Travelling-wave behaviour in a multiphase model of a population of cells in an artificial scaffold J. Math. Biol. 2007 449 480
[23] , , , , Mathematical modelling of engineered tissue growth using a multiphase porous flow mixture theory J. Math. Biol 2006 571 594
[24] R.J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations. Society for Industrial and Applied Mathematics (2007).
[25] , , , , The evolution of tumour composition during fractionated radiotherapy: implications for outcome Bull. Math. Biol 2018 1207 1235
[26] Boundary conditions in mixture theory and in CFD applications of higher order models Comput. Math. Appl 2007 156 167
[27] , A.J. El Haj, S.L. Waters and H.M. Byrne, A multiscale analysis of nutrient transport and biological tissue growth in vitro Math. Med. Biol 2015 345 366
[28] , Pathways of apoptotic and non-apoptotic death in tumour cells Nat. Rev. Cancer 2004 592 603
[29] , Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications J. Math. Biol. 2009 625 656
[30] , , , , , , , , , A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation Radiat. Oncol 2015 159
[31] , Mechanisms of tumor cell necrosis Curr. Pharm. Des 2010 56 68
[32] L. Tao and K.R. Rajagopal, On Boundary Conditions In Mixture Theory (1995) 130–149.
[33] , Mathematical modelling of avascular-tumour growth IMA J. Math. Appl. Med. Biol. 1997 39 69
[34] , Mathematical modelling of avascular-tumour growth. II: Modelling growth saturation IMA J. Math. Appl. Med. Biol. 1999 171 211
[35] , , Spherical cancer models in tumor biology Neoplasia 2015 1 15
Cité par Sources :