On integrability and exact solvability in deterministic and stochastic Laplacian growth
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 3

Voir la notice de l'article provenant de la source EDP Sciences

We review applications of theory of classical and quantum integrable systems to the free-boundary problems of fluid mechanics as well as to corresponding problems of statistical mechanics. We also review important exact results obtained in the theory of multi-fractal spectra of the stochastic models related to the Laplacian growth: Schramm-Loewner and Levy-Loewner evolutions.
DOI : 10.1051/mmnp/2019033

Igor Loutsenko 1 ; Oksana Yermolayeva 1

1 Laboratoire de Physique Mathematique, Centre de recherches mathématiques, Université de Montréal, P.O. Box 6128, Centre-ville Station Montréal (Québec) H3C 3J7, Canada.
@article{10_1051_mmnp_2019033,
     author = {Igor Loutsenko and Oksana Yermolayeva},
     title = {On integrability and exact solvability in deterministic and stochastic {Laplacian} growth},
     journal = {Mathematical modelling of natural phenomena},
     eid = {3},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2019033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019033/}
}
TY  - JOUR
AU  - Igor Loutsenko
AU  - Oksana Yermolayeva
TI  - On integrability and exact solvability in deterministic and stochastic Laplacian growth
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019033/
DO  - 10.1051/mmnp/2019033
LA  - en
ID  - 10_1051_mmnp_2019033
ER  - 
%0 Journal Article
%A Igor Loutsenko
%A Oksana Yermolayeva
%T On integrability and exact solvability in deterministic and stochastic Laplacian growth
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019033/
%R 10.1051/mmnp/2019033
%G en
%F 10_1051_mmnp_2019033
Igor Loutsenko; Oksana Yermolayeva. On integrability and exact solvability in deterministic and stochastic Laplacian growth. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 3. doi: 10.1051/mmnp/2019033

[1] M. Adler, J. Moser On a class of polynomials connected with the Korteveg-de Vries equation Commun. Math. Phys 1978 1 30

[2] Y. Ameur, H. Hedenmalm, N. Makarov Random normal matrices and Ward identities Ann. Probab 2015 1157 1201

[3] Y. Ameur, H.K. Hedenmalm, N. Makarov Fluctuations of eigenvalues of random normal matrices Duke Math. J 2011 31 81

[4] D. Applebaum Levy processes – from probability to finance and quantum groups Notices AMS 2004 1336 1347

[5] D. Beliaev, S. Smirnov Harmonic measure and SLE Commun. Math. Phys 2009 577 595

[6] D. Beliaev, B. Duplantier, M. Zinsmeister Integral means spectrum of whole-plane SLE Commun. Math. Phys 2017 119 133

[7] D. Bensimon, L. Kadanoff, S. Liang, B. Shraiman, C. Tang Viscous flows in two dimensions Rev. Mod. Phys 1986 977

[8] Y. Berest, I. Loutsenko Huygens principle in Minkowski spaces and soliton solutions of the Korteweg-de Vries Equation Commun. Math. Phys 1997 113 132

[9] Y.Y. Berest, Y.A. Molchanov Fundamental solutions for partial differential equations with reflection group invariance J. Math. Phys 1995 4324 4339

[10] Y.Y. Berest, A.P. Veselov Huygens’ principle and integrability Russ. Math. Surv 1994 5 77

[11] A. Boutet De Monvel, I. Loutsenko, O. Yermolayeva New applications of quantum algebraically integrable systems in fluid dynamics Anal. Math. Phys 2013 277 294

[12] J.L. Burcnall, T.W. Chaundy A set of differential equations which can be solved by polynomials Proc. London Soc 1929

[13] O.A. Chalykh, K.L. Styrkas, A.P. Veselov Algebraic integrability for Schrodinger equations and finite reflection groups Theor. Math. Phys 1993 253 275

[14] O.A. Chalykh, M.V. Feigin, A.P.Veselov New integrable generalizations of Calogero- Moser quantum problem J. Math. Phys 1998 695 703

[15] O.A. Chalykh, M.V. Feigin, A.P. Veselov Multidimensional Baker-Akhiezer functions and Huygens’ principle Commun. Math. Phys 1999 533 566

[16] J. Cardy SLE for theoretical physicists Ann. Phys 2005 81 118

[17] L. Carleson, N. Makarov Laplacian path models J. Anal. Math 2002 103 150

[18] D. Crowdy, Quadrature domains and fluid dynamics, In Quadrature domains and their applications, Vol. 156 of Oper. Theory Adv. Appl. Birkhauser, Basel (2005) 113–129.

[19] S.P. Dawson, M. Mineev-Weinstein Long-time behavior of the N-finger solution of the Laplacian growth equation Physica D 1994 373 387

[20] B. Duplantier Conformally invariant fractals and potential theory Phys. Rev. Lett 2000 1363 1367

[21] B. Duplantier, T.P. Chi Nguyen, T.T. Nga Nguyen, M. Zinsmeister The coefficient problem and multifractality of whole-plane SLE and LLE Ann. Henri Poincare 2015 1311 1395

[22] P.I. Etingof Integrability of filtration problems with a moving boundary Dokl. Akad. Nauk SSSR 1990 42 47

[23] A. Eremenko, E. Lundberg Non-algebraic quadrature domains Potent. Anal 2013 787 804

[24] J. Escher, G. Simonett On Hele–Shaw models with surface tension Math. Res. Lett 1996 467 474

[25] A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, A. Orlov Matrix models of 2D gravity and Toda theory Nucl. Phys. B 1991 565 618

[26] I.A. Gruzberg Stochastic geometry of critical curves, Schramm–Loewner evolutions and conformal field theory J. Phys. A: Math. Gen 2006 12601 12655

[27] B. Gustafsson and H.S. Shapiro, What is a quadrature domain? In Quadrature domains and their applications, Vol. 156 of Oper. Theory Adv. Appl. Birkhauser, Basel (2005) 1–25.

[28] B. Gustafsson, R. Teodorescu and A. Vasil’ev, Classical and stochastic Laplacian growth. Advances in Mathematical Fluid Mechanics. Birkhauser/Springer, Cham (2014).

[29] T. Halsey Diffusion limited aggregation: a model for pattern formation Physics Today 2000 36

[30] T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman Fractal measures and their singularities: the characterization of strange sets Phys. Rev. A 1986 1141

[31] T.C. Halsey, K. Honda, B. Duplantier Multifractal dimensions for branched growth J. Stat. Phys 1996 681 743

[32] J. Harnad, I. Loutsenko, O. Yermolayeva Constrained reductions of 2D dispersionless Toda Hierarchy, Hamiltonian Structure and Interface Dynamics J. Math. Phys 2005 112701

[33] M.B. Hastings Exact Multifractal Spectra for Arbitrary Laplacian Random Walks Phys. Rev. Lett 2002

[34] M.B. Hastings, L.S. Levitov Laplacian growth as one-dimensional turbulence Physica D 1998 244 252

[35] S.D. Howison, I. Loutsenko, J.R. Ockendon A class of exactly solvable free-boundary inhomogeneous porous medium flows Appl. Math. Lett 2007 93 97

[36] L. Igor, V. Spiridonov Soliton solutions of integrable hierarchies and Coulomb plasmas J. Stat. Phys 2000

[37] D.D. Joseph, J.C. Saut Short wave instabilities and ill-posed initial value problems Theoret. Comp. Fluid Dyn 1990 191 227

[38] L. Karp Construction of quadrature domains in ℝn from quadrature domains in ℝ2 Complex Var. Elliptic Eq 1992 179 188

[39] L. Karp, E. Lundberg A four-dimensional Neumann ovaloid Ark. Mat 2017 185 198

[40] D. Khavinson, M. Mineev-Weinstein, M. Putinar Planar elliptic growth Complex Anal. Oper. Theory 2009 425 451

[41] I.K. Kostov, I. Krichever, M. Mineev-Weinstein, P.B. Wiegmann, A. Zabrodin The τ-function for analytic curves MSRI Publ 2001 285 299

[42] I. Krichever, M. Mineev-Weinstein, P. Wiegmann, A. Zabrodin Laplacian growth and Whitham equations of soliton theory Physica D 2004 1 28

[43] G.F. Lawler Conformally invariant processes in the plane. Mathematical Surveys and Monographs 114 Am. Math. Soc., Providence, RI 2005

[44] G.F. Lawler Conformal invariance and 2D statistical physics Bull. Am. Math. Soc 2009 35 54

[45] I. Loutsenko The variable coefficient Hele–Shaw problem, Integrability and quadrature identities Commun. Math. Phys 2006 465 479

[46] I. Loutsenko SLEκ: correlation functions in the coefficient problem J. Phys. A: Math. Theor 2012 275001

[47] I.M. Loutsenko, V.P. Spiridonov Self-similar potentials and Ising models Pis’ma v ZhETF (JETP Lett.) 1997 747 753

[48] I. Loutsenko, V. Spiridonov Spectral self-similarity, one-dimensional Ising chains and random matrices Nucl. Phys. B 1999 731 758

[49] I. Loutsenko, O. Yermolaeva Non-Laplacian growth: exact results Physica D 2007 56 61

[50] I. Loutsenko and O. Yermolayeva, Stochastic Loewner Evolutions, Fuchsian Systems and Orthogonal Polynomials. Preprint arXiv:1904.01472.

[51] I. Loutsenko, O. Yermolayeva On exact multi-fractal spectrum of the whole-plane SLE J. Stat. Mech 2013

[52] I. Loutsenko, O. Yermolayeva New exact results in spectra of stochastic Loewner evolution J. Phys. A 2014 165202

[53] I. Loutsenko, O. Yermolayeva, M. Zinsmeister On a competitive model of Laplacian growth J. Stat. Phys 2011 919 931

[54] E. Lundberg Laplacian growth, elliptic growth, and singularities of the Schwarz potential J. Phys. A: Math. Theor 2011 135202

[55] J. Mathiesen, I. Procaccia, H.L. Swinney, M. Thrasher The universality class of diffusion-limited aggregation and viscous fingering Europhys. Lett 2006 257 263

[56] R. Mcdonald, M. Mineev-Weinstein Poisson growth Anal. Math. Phys 2015 193 205

[57] M. Mineev-Weinstein Selection of the Saffman-Taylor finger width in the absence of surface tension: an exact result Phys. Rev. Lett 1998 2113

[58] M. Mineev-Weinstein, P.B. Wiegmann, A. Zabrodin Integrable structure of interface dynamics Phys. Rev. Lett 2000 5106 5109

[59] M. Mineev-Weinstein, M. Putinar, R. Teodorescu Random matrix theory in 2D, Laplacian growth, and operator theory J. Phys. A: Math. Theor 2008

[60] T. Miwa, M. Jimbo and E. Date, Solitons: Differential Equations, Symmetries and Infinite-Dimensional Algebras. Cambridge University Press (2000).

[61] P. Oikonomou, I. Rushkin, I.A. Gruzberg, L.P. Kadanoff Global properties of stochastic Loewner evolution driven by Lévy processes J. Stat. Mech 2008 P01019

[62] P.J. Polubarinova-Kotschina On the displacement of the oilbearing contour C. R. (Dokl.) Acad. Sci. URSS, n. Ser 1945 250 254

[63] S. Richardson Hele Shaw flows with a free boundary produced by the injection of fluid into a narrow channel J. Fluid Mech 1972 609 618

[64] S. Rohde, M. Zinsmeister Some remarks on Laplacian growth Topol. Appl 2005 26 43

[65] I. Rushkin, P. Oikonomou, L.P. Kadanoff, I.A. Gruzberg Stochastic Loewner evolution driven by Levy processes J. Stat. Mech 2006 P01001

[66] P.G. Saffman, G. Taylor The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous liquid Proc. R. Soc. A: Math. Phys. Eng. Sci 1958 312 329

[67] G. Selander, Two deterministic growth models related to diffusion-limited aggregation. Thesis. KTH, Stockholm (1999).

[68] H.S. Shapiro, The Schwarz Function and Its Generalization to Higher Dimensions. Arkansas Lecture Notes in the Mathematical Sciences 9, John Wily Sons, Inc., New York (1992).

[69] A.N. Varchenko and P.I. Etingof, Why the boundary of a round drop becomes a curve of order four. American Mathematical Society, University Lecture Series, 3 (1994).

[70] A. Zabrodin New applications of non-hermitian random matrices Ann. Henri Poincare 2003 S851 S861

[71] A. Zabrodin Growth of fat slits and dispersionless KP hierarchy J. Phys. A: Math. Theor 2009 497 514

[72] A. Zabrodin Canonical and grand canonical partition functions of Dyson gases as tau-functions of integrable hierarchies and their fermionic realization Complex Anal. Operat. Theory 2010 497 514

Cité par Sources :