Voir la notice de l'article provenant de la source EDP Sciences
Igor Loutsenko 1 ; Oksana Yermolayeva 1
@article{10_1051_mmnp_2019033,
author = {Igor Loutsenko and Oksana Yermolayeva},
title = {On integrability and exact solvability in deterministic and stochastic {Laplacian} growth},
journal = {Mathematical modelling of natural phenomena},
eid = {3},
publisher = {mathdoc},
volume = {15},
year = {2020},
doi = {10.1051/mmnp/2019033},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019033/}
}
TY - JOUR AU - Igor Loutsenko AU - Oksana Yermolayeva TI - On integrability and exact solvability in deterministic and stochastic Laplacian growth JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019033/ DO - 10.1051/mmnp/2019033 LA - en ID - 10_1051_mmnp_2019033 ER -
%0 Journal Article %A Igor Loutsenko %A Oksana Yermolayeva %T On integrability and exact solvability in deterministic and stochastic Laplacian growth %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019033/ %R 10.1051/mmnp/2019033 %G en %F 10_1051_mmnp_2019033
Igor Loutsenko; Oksana Yermolayeva. On integrability and exact solvability in deterministic and stochastic Laplacian growth. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 3. doi: 10.1051/mmnp/2019033
[1] , On a class of polynomials connected with the Korteveg-de Vries equation Commun. Math. Phys 1978 1 30
[2] , , Random normal matrices and Ward identities Ann. Probab 2015 1157 1201
[3] , , Fluctuations of eigenvalues of random normal matrices Duke Math. J 2011 31 81
[4] Levy processes – from probability to finance and quantum groups Notices AMS 2004 1336 1347
[5] , Harmonic measure and SLE Commun. Math. Phys 2009 577 595
[6] , , Integral means spectrum of whole-plane SLE Commun. Math. Phys 2017 119 133
[7] , , , , Viscous flows in two dimensions Rev. Mod. Phys 1986 977
[8] , Huygens principle in Minkowski spaces and soliton solutions of the Korteweg-de Vries Equation Commun. Math. Phys 1997 113 132
[9] , Fundamental solutions for partial differential equations with reflection group invariance J. Math. Phys 1995 4324 4339
[10] , Huygens’ principle and integrability Russ. Math. Surv 1994 5 77
[11] , , New applications of quantum algebraically integrable systems in fluid dynamics Anal. Math. Phys 2013 277 294
[12] , A set of differential equations which can be solved by polynomials Proc. London Soc 1929
[13] , , Algebraic integrability for Schrodinger equations and finite reflection groups Theor. Math. Phys 1993 253 275
[14] , , New integrable generalizations of Calogero- Moser quantum problem J. Math. Phys 1998 695 703
[15] , , Multidimensional Baker-Akhiezer functions and Huygens’ principle Commun. Math. Phys 1999 533 566
[16] SLE for theoretical physicists Ann. Phys 2005 81 118
[17] , Laplacian path models J. Anal. Math 2002 103 150
[18] D. Crowdy, Quadrature domains and fluid dynamics, In Quadrature domains and their applications, Vol. 156 of Oper. Theory Adv. Appl. Birkhauser, Basel (2005) 113–129.
[19] , Long-time behavior of the N-finger solution of the Laplacian growth equation Physica D 1994 373 387
[20] Conformally invariant fractals and potential theory Phys. Rev. Lett 2000 1363 1367
[21] , , , The coefficient problem and multifractality of whole-plane SLE and LLE Ann. Henri Poincare 2015 1311 1395
[22] Integrability of filtration problems with a moving boundary Dokl. Akad. Nauk SSSR 1990 42 47
[23] , Non-algebraic quadrature domains Potent. Anal 2013 787 804
[24] , On Hele–Shaw models with surface tension Math. Res. Lett 1996 467 474
[25] , , , , Matrix models of 2D gravity and Toda theory Nucl. Phys. B 1991 565 618
[26] Stochastic geometry of critical curves, Schramm–Loewner evolutions and conformal field theory J. Phys. A: Math. Gen 2006 12601 12655
[27] B. Gustafsson and H.S. Shapiro, What is a quadrature domain? In Quadrature domains and their applications, Vol. 156 of Oper. Theory Adv. Appl. Birkhauser, Basel (2005) 1–25.
[28] B. Gustafsson, R. Teodorescu and A. Vasil’ev, Classical and stochastic Laplacian growth. Advances in Mathematical Fluid Mechanics. Birkhauser/Springer, Cham (2014).
[29] Diffusion limited aggregation: a model for pattern formation Physics Today 2000 36
[30] , , , , Fractal measures and their singularities: the characterization of strange sets Phys. Rev. A 1986 1141
[31] , , Multifractal dimensions for branched growth J. Stat. Phys 1996 681 743
[32] , , Constrained reductions of 2D dispersionless Toda Hierarchy, Hamiltonian Structure and Interface Dynamics J. Math. Phys 2005 112701
[33] Exact Multifractal Spectra for Arbitrary Laplacian Random Walks Phys. Rev. Lett 2002
[34] , Laplacian growth as one-dimensional turbulence Physica D 1998 244 252
[35] , , A class of exactly solvable free-boundary inhomogeneous porous medium flows Appl. Math. Lett 2007 93 97
[36] , Soliton solutions of integrable hierarchies and Coulomb plasmas J. Stat. Phys 2000
[37] , Short wave instabilities and ill-posed initial value problems Theoret. Comp. Fluid Dyn 1990 191 227
[38] Construction of quadrature domains in ℝn from quadrature domains in ℝ2 Complex Var. Elliptic Eq 1992 179 188
[39] , A four-dimensional Neumann ovaloid Ark. Mat 2017 185 198
[40] , , Planar elliptic growth Complex Anal. Oper. Theory 2009 425 451
[41] , , , , The τ-function for analytic curves MSRI Publ 2001 285 299
[42] , , , Laplacian growth and Whitham equations of soliton theory Physica D 2004 1 28
[43] Conformally invariant processes in the plane. Mathematical Surveys and Monographs 114 Am. Math. Soc., Providence, RI 2005
[44] Conformal invariance and 2D statistical physics Bull. Am. Math. Soc 2009 35 54
[45] The variable coefficient Hele–Shaw problem, Integrability and quadrature identities Commun. Math. Phys 2006 465 479
[46] SLEκ: correlation functions in the coefficient problem J. Phys. A: Math. Theor 2012 275001
[47] , Self-similar potentials and Ising models Pis’ma v ZhETF (JETP Lett.) 1997 747 753
[48] , Spectral self-similarity, one-dimensional Ising chains and random matrices Nucl. Phys. B 1999 731 758
[49] , Non-Laplacian growth: exact results Physica D 2007 56 61
[50] I. Loutsenko and O. Yermolayeva, Stochastic Loewner Evolutions, Fuchsian Systems and Orthogonal Polynomials. Preprint arXiv:1904.01472.
[51] , On exact multi-fractal spectrum of the whole-plane SLE J. Stat. Mech 2013
[52] , New exact results in spectra of stochastic Loewner evolution J. Phys. A 2014 165202
[53] , , On a competitive model of Laplacian growth J. Stat. Phys 2011 919 931
[54] Laplacian growth, elliptic growth, and singularities of the Schwarz potential J. Phys. A: Math. Theor 2011 135202
[55] , , , The universality class of diffusion-limited aggregation and viscous fingering Europhys. Lett 2006 257 263
[56] , Poisson growth Anal. Math. Phys 2015 193 205
[57] Selection of the Saffman-Taylor finger width in the absence of surface tension: an exact result Phys. Rev. Lett 1998 2113
[58] , , Integrable structure of interface dynamics Phys. Rev. Lett 2000 5106 5109
[59] , , Random matrix theory in 2D, Laplacian growth, and operator theory J. Phys. A: Math. Theor 2008
[60] T. Miwa, M. Jimbo and E. Date, Solitons: Differential Equations, Symmetries and Infinite-Dimensional Algebras. Cambridge University Press (2000).
[61] , , , Global properties of stochastic Loewner evolution driven by Lévy processes J. Stat. Mech 2008 P01019
[62] On the displacement of the oilbearing contour C. R. (Dokl.) Acad. Sci. URSS, n. Ser 1945 250 254
[63] Hele Shaw flows with a free boundary produced by the injection of fluid into a narrow channel J. Fluid Mech 1972 609 618
[64] , Some remarks on Laplacian growth Topol. Appl 2005 26 43
[65] , , , Stochastic Loewner evolution driven by Levy processes J. Stat. Mech 2006 P01001
[66] , The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous liquid Proc. R. Soc. A: Math. Phys. Eng. Sci 1958 312 329
[67] G. Selander, Two deterministic growth models related to diffusion-limited aggregation. Thesis. KTH, Stockholm (1999).
[68] H.S. Shapiro, The Schwarz Function and Its Generalization to Higher Dimensions. Arkansas Lecture Notes in the Mathematical Sciences 9, John Wily Sons, Inc., New York (1992).
[69] A.N. Varchenko and P.I. Etingof, Why the boundary of a round drop becomes a curve of order four. American Mathematical Society, University Lecture Series, 3 (1994).
[70] New applications of non-hermitian random matrices Ann. Henri Poincare 2003 S851 S861
[71] Growth of fat slits and dispersionless KP hierarchy J. Phys. A: Math. Theor 2009 497 514
[72] Canonical and grand canonical partition functions of Dyson gases as tau-functions of integrable hierarchies and their fermionic realization Complex Anal. Operat. Theory 2010 497 514
Cité par Sources :