Integrability-preserving regularizations of Laplacian Growth
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 9

Voir la notice de l'article provenant de la source EDP Sciences

The Laplacian Growth (LG) model is known as a universality class of scale-free aggregation models in two dimensions, characterized by classical integrability and featuring finite-time boundary singularity formation. A discrete counterpart, Diffusion-Limited Aggregation (or DLA), has a similar local growth law, but significantly different global behavior. For both LG and DLA, a proper description for the scaling properties of long-time solutions is not available yet. In this note, we outline a possible approach towards finding the correct theory yielding a regularized LG and its relation to DLA.
DOI : 10.1051/mmnp/2019032

Razvan Teodorescu 1

1 4202 E. Fowler Ave., CMC342, Tampa, FL 33620, USA.
@article{10_1051_mmnp_2019032,
     author = {Razvan Teodorescu},
     title = {Integrability-preserving regularizations of {Laplacian} {Growth}},
     journal = {Mathematical modelling of natural phenomena},
     eid = {9},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2019032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019032/}
}
TY  - JOUR
AU  - Razvan Teodorescu
TI  - Integrability-preserving regularizations of Laplacian Growth
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019032/
DO  - 10.1051/mmnp/2019032
LA  - en
ID  - 10_1051_mmnp_2019032
ER  - 
%0 Journal Article
%A Razvan Teodorescu
%T Integrability-preserving regularizations of Laplacian Growth
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019032/
%R 10.1051/mmnp/2019032
%G en
%F 10_1051_mmnp_2019032
Razvan Teodorescu. Integrability-preserving regularizations of Laplacian Growth. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 9. doi: 10.1051/mmnp/2019032

[1] O. Alekseev, M. Mineev-Weinstein Stochastic Laplacian growth Phys. Rev. E 2016 060103

[2] O. Alekseev, M. Mineev-Weinstein Theory of stochastic Laplacian growth J. Stat. Phys 2017 68 91

[3] O. Alekseev, M. Mineev-Weinstein Statistical mechanics of stochastic growth phenomena Phys. Rev. E 2017 010103

[4] F. Balogh, M. Bertola, S.Y. Lee and K.D.T.-R. McLaughlin, Strong asymptotics of the orthogonal polynomial with respect to a measure supported on the plane. Preprint arXiv.math-ph.:1209.6366 (2012).

[5] M. Bauer, D. Bernard 2D growth processes: SLE and Loewner chains Phys. Rep 2006 115

[6] E. Ben-Jacob From snowflake formation to the growth of bacterial colonies. Part 2: Cooperative formation of complex colonial patterns Contempt. Phys. 1997 205 241

[7] D. Bensimon, L. Kadanoff, S. Liang, B. Shraiman, C. Tang Viscous flows in two dimensions Rev. Mod. Phys 1986 977

[8] E. Bettelheim, Classical and Quantum Integrability in Laplacian Growth. Preprint arXiv:1506.01463 [nlin.PS] (2015).

[9] P. Bleher, A. Its Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model Ann. Math 1999 185 266

[10] P. Bleher, A.B.J. Kuijlaars Large n limit of Gaussian random matrices with external source, part I Commun. Math. Phys 2004 43 76

[11] P. Bleher, A. Kuijlaars Orthogonal polynomials in the normal matrix model with a cubic potential Adv. Math 2012 1272 1321

[12] P. Bleher, A. Kuijllars, S. Delvaux Random matrix model with external source and a constrained vector equilibrium problem Commun. Pure Appl. Math 2011 116160

[13] L. Carleson, N. Makarov Aggregation in the plane and Loewner’s equation Commun. Math. Phys 2001 538 607

[14] E. Dibenedetto, A. Friedman Bubble growth in porous media Indiana Univ. Math. J 1986 573 606

[15] M. Duits, A.B.J. Kuijlaars Painlevé I asymptotics for orthogonal polynomials with respect to a varying weight Nonlinearity 2006 2211 2245

[16] P. Ebenfelt, B. Gustafsson, D. Khavinson and M. Putinar eds., Quadrature Domains and Their Applications, The Harold S. Shapiro Anniversary Volume, Birkhäuser, Basel (2005).

[17] P. Elbau, G. Felder Density of eigenvalues of random normal matrices Commun. Math. Phys 2005 433 450

[18] A.S. Fokas, A.R. Its, A.V. Kitaev The isomonodromy approach to matrix problems in 2D quantum gravity Commun. Math. Phys. 1992 395 430

[19] L.A. Galin Unsteady filtration with a free surface Dokl. Akad. Nauk SSSR 1945 250 253

[20] S. Garoufalidis, A. Its, A. Kapaev, M. Mari-O Asymptotics of the Instantons of Painlev I Int. Math. Res. Notices 2012 561 606

[21] C. Gomez, M. Ruiz-Altaba and G. Sierra, Quantum groups in two-dimensional physics. Cambridge Univ. Press (1996).

[22] A.A. Gonchar, E.A. Rakhmanov Equilibrium measure and the distribution of zeros of extremal polynomials Mat. Sbornik 1984 117 127

[23] B. Gustafsson, R. Teodorescu and A. Vasil’ev, Classical and stochastic Laplacian growth. Springer International Publishing (2014).

[24] A. Hassel, S. Zelditch Determinants of Laplacians in exterior domains IMRN 1999 971 1004

[25] M.B. Hastings, L.S. Levitov Laplacian growth as one-dimensional turbulence Physica D 1998 244

[26] H. Hedenmalm, S. Shimorin Hele-Shaw flow on hyperbolic surfaces. J. Math. Pures Appl. 2002 187 222

[27] S.D. Howison Fingering in Hele-Shaw cells J. Fluid Mech 1986 439 453

[28] S.D. Howison Complex variable methods in Hele-Shaw moving boundary problems Eur. J. Appl. Math 1992 209 224

[29] S. Howison, I. Loutsenko, J. Ockendon A class of exactly solvable free-boundary inhomogeneous porous medium flows Appl. Math. Lett 2007 93 97

[30] A.R. Its and L.A. Takhtajan, Normal matrix models, ∂̅-problem, and orthogonal polynomials on the complex plane. Preprint arXiv.math.:0708.3867 (2007).

[31] J. Jenkins, Univalent functions and conformal mapping. Springer-Verlag (1958).

[32] F. Johansson Viklund, A. Sola, A. Turner Scaling limits of anisotropic Hastings-Levitov clusters Ann. Inst. Henri Poincaré Probab. Stat 2012 235 357

[33] F. Johansson Viklund, A. Sola, A. Turner Small-particle limits in a regularized Laplacian growth model Commun. Math. Phys 2015 331 366

[34] Q. Kang, D. Zhang, S. Chen Immiscible displacement in a channel: simulations of fingering in two dimensions Adv. Wat. Res 2004 13 22

[35] L. Karp Construction of quadrature domains in Rn from quadrature domains in R2 Complex Var. Theory Appl 1992 179 188

[36] D. Khavinson, M. Mineev-Weinstein, M. Putinar Planar eliptic growth Complex Anal. Oper. Theory 2009 425 451

[37] D. Khavinson, M. Mineev-Weinstein, M. Putinar, R. Teodorescu Lemniscates are destroyed by eliptic growth Math. Res. Lett 2010 337

[38] I. Kostov, I. Krichever, M. Mineev-Weinstein, P. Wiegmann and A. Zabrodin, τ-function for analytic curves. Vol. 40 of Random Matrix Models and Their Applications, Math. Sci. Res. Inst. Publ. Cambridge University Press (2001) 285–299.

[39] I. Krichever, A. Marshakov, A. Zabrodin. Integrable structure of the Dirichlet boundary problem in multiply-connected domains Commun. Math. Phys 2005 1 44

[40] I. Krichever, M. Mineev-Weinstein, P. Wiegmann, A. Zabrodin Laplacian growth and Whitham equations of soliton theory Physica D 2004 1 28

[41] P.P. Kufarev A solution of the boundary problem of an oil well in a circle Dokl. Acad. Nauk SSSR 1948 1333 1334

[42] J.S. Langer Instabilities and pattern formation in crystal growth Rev. Mod. Phys 1980 1 28

[43] S.-Y. Lee and N. Makarov, Topology of quadrature domains. arXiv:1307.0487 [math.CV] (2015).

[44] S.-Y. Lee, R. Teodorescu, P. Wiegmann Shocks and finite-time singularities in Hele-Shaw flow Physica D 2009 1113 1128

[45] S.-Y. Lee, R. Teodorescu, P. Wiegmann Weak solution of the Hele-Shaw problem: shocks and viscous fingering JETP Lett 2010 9196

[46] S.-Y. Lee, R. Teodorescu, P. Wiegmann Viscous shocks in Hele-Shaw flow and Stokes phenomena of the Painlevé I transcendent Physica D 2011 1080 1091

[47] D.S. Lubinsky, H.N. Mhaskar, E.B. Saff A proof of Freud’s conjecture for exponential weights Constr. Approx 1988 65 83

[48] E. Lundberg, D. Khavinson Gravitational lensing by a collection of objects with radial densities Anal. Math. Phys 2011 139 145

[49] P. Macklin, J. Lowengrub An improved geometry-aware curvature discretization for level set methods: application to tumor growth J. Comput. Phys 2006 392 401

[50] O. Marchal, M. Cafasso Double-scaling limits of random matrices and minimal (2m, 1) models: the merging of two cuts in a degenerate case J. Stat. Mech. Theory Exp 2011 P04013

[51] A. Marshakov, P. Wiegmann, A. Zabrodin Integrable structure of the Dirichlet boundary problem in two dimensions Commun. Math. Phys 2002 131 153

[52] A. Martinez-Finkelshtein, P. Martinez-González, R. Orive Asymptotics of polynomial solutions of a class of generalized Lamé differential equations Electr. Trans. Numer. Anal 2005 18 28

[53] A. Martínez-Finkelshtein, E.A. Rakhmanov. Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials Comm. Math. Phys 2011 53 111

[54] A. Martínez-Finkelshtein, E.B. Saff Asymptotic properties of Heine-Stieltjes and Van Vleck polynomials J. Approx. Theory 2002 131 151

[55] E. Memin, P. Perez Fluid motion recovery by coupling dense and parametric vector fields IEEE CVPR 1999 620 625

[56] H.N. Mhaskar, E.B. Saff Where does the sup norm of a weighted polynomial live? (A generalization of incomplete polynomials) Constr. Approx 1985 71 91

[57] M.B. Mineev A finite polynomial solution of the two-dimensional interface dynamics Physica D 1990 288 292

[58] M. Mineev-Weinstein Multidimensional pattern formation has an infinite number of constants of motion Phys. Rev. E 1993 R2241 R2244

[59] M.B. Mineev-Weinstein Selection of the Saffman-Taylor finger in the absence of surface tension: an exact result Phys. Rev. Lett 1998 2113 2116

[60] M.B. Mineev-Weinstein, S.P. Dawson A class of non-singular exact solutions for Laplacian pattern formation Phys. Rev. E 1994 R24 R27

[61] M. Mineev-Weinstein, P.B. Wiegmann, A. Zabrodin Integrable structure of interface dynamics Phys. Rev. Lett 2000 5106

[62] M. Mineev-Weinstein, M. Putinar, L Sander, A. Zabrodin Physics and mathematics of growing interfaces Physica D 2007 235

[63] M. Mineev-Weinstein, M. Putinar, R. Teodorescu Random matrices in 2D Laplacian growth and operator theory J. Phys. A: Math. Theor 2008 263001

[64] M.Y. Mo The Riemann-Hilbert approach to double scaling limit of random matrix eigenvalues near the “birth of a cut” transition Int. Math. Res. Not. IMRN 2008 rnn042

[65] J. Norris, A. Turner Hastings-Levitov aggregation in the small-particle limit Commun. Math. Phys 2012 809 841

[66] R. Orive, Z. García On a class of equilibrium problems in the real axis J. Comput. Appl. Math 2010 1065 1076

[67] P. Ya. Polubarinova-Kochina On a problem of the motion of the contour of a petroleum shell Dokl. Akad. Nauk USSR 1945 254 257

[68] Ch. Pommerenke, Univalent functions, with a chapter on quadratic differentials by G. Jensen. Vandenhoeck Ruprecht, Göttingen (1975).

[69] Ch. Pommerenke, Boundary behaviour of conformal maps. Springer, Berlin (1992).

[70] O. Praud, H.L. Swinney Fractal dimensions and unscreened angles measured for radial viscous fingering Phys. Rev. E 2005 011406

[71] A. Pressley and G. Segal, Loop groups, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1986).

[72] G. Prokert Existence results for Hele-Shaw flow driven by surface tension Eur. J. Appl. Math 1998 195 221

[73] E.A. Rakhmanov The convergence of diagonal Padé approximants Mat. Sb. (N.S.) 1977 271 291

[74] S. Richardson Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel J. Fluid Mech 1972 609 618

[75] P.G. Saffman, G. Taylor The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid Proc. Roy. Soc. London. Ser. A 1958 312 329

[76] E.B. Saff and V. Totik, Logarithmic Potentials with External Fields. Vol. 316 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin (1997).

[77] Y. Sawada, A. Dougherty, J.P. Gollub Dendritic and fractal patterns in electrolytic metal deposits Phys. Rev. Lett 1986 1260 1263

[78] B. Shraiman, D. Bensimon Singularities in nonlocal interface dynamics Phys. Rev. A 1984 2840

[79] M.G. Stepanov, L.S. Levitov Laplacian growth with separately controlled noise and anisotropy Phys. Rev. E 2001 061102

[80] K. Takasaki, T. Takebe Integrable hierarchies and dispersionless limit Rev. Math. Phys 1995 743

[81] G. Taylor, P.G. Saffman A note on the motion of bubbles in a Hele-Shaw cell and porous medium Q. J. Mech. Appl. Math 1959 265 279

[82] R. Teodorescu Generic critical points of normal matrix ensembles J. Phys. A: Math. Theor 2006 8921

[83] R. Teodorescu, E. Bettelheim, O. Agam, A. Zabrodin, P. Wiegmann Normal random matrix ensemble as a growth problem Nucl. Phys. B 2005 407 444

[84] R. Teodorescu, P. Wiegmann, A. Zabrodin Unstable fingering patterns of Hele-Shaw flows as a dispersionless limit of the Kortweg-de Vries hierarchy Phys. Rev. Lett 2005 044502

[85] Y. Tu Saffman-Taylor problem in sector geometry: solution and selection Phys. Rev. A 1991 1203 1210

[86] W. Van Assche, J. Geronimo and A.B.J. Kuijlaars, Riemann-Hilbert problems for multiple orthogonal polynomials, in Special Functions 2000 edited by J. Bustoz et al. Kluwer, Dordrecht (2001) 23–59.

[87] A.N. Varchenko and P.I. Etingof, Why the boundary of a round drop becomes a curve of order four. Vol. 3 of University Lecture Series. American Mathematical Society, Providence, RI (1992).

[88] Yu.P. Vinogradov, P.P. Kufarev On some particular solutions of the problem of filtration Doklady Akad. Nauk SSSR (N.S.) 1947 335 338

[89] D.V. Voiculescu Free probability for pairs of faces II: 2-variables bi-free partial R-transform and systems with rank ≤ 1 commutation Ann. Inst. Henri Poincaré Probab. Statist 2016 1 15

[90] P.B. Wiegmann, A. Zabrodin Conformal maps and integrable hierarchies Commun. Math. Phys. 2000 523 538

[91] P. Wiegmann, A. Zabrodin Large scale correlations in normal and general non-Hermitian matrix ensembles J. Phys. A 2003 3411 3424

[92] P. Wiegmann and A. Zabrodin, Large N expansion for normal and complex matrix ensembles. Frontiers Number Theory, Physics, and Geometry I. Springer, Berlin/Heidelberg, Part I (2006) 213–229.

Cité par Sources :