Voir la notice de l'article provenant de la source EDP Sciences
Angélique Stéphanou 1 ; Pascal Ballet 2 ; Gibin Powathil 3
@article{10_1051_mmnp_2019026,
author = {Ang\'elique St\'ephanou and Pascal Ballet and Gibin Powathil},
title = {Hybrid data-based modelling in oncology: successes, challenges and hopes},
journal = {Mathematical modelling of natural phenomena},
eid = {21},
publisher = {mathdoc},
volume = {15},
year = {2020},
doi = {10.1051/mmnp/2019026},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019026/}
}
TY - JOUR AU - Angélique Stéphanou AU - Pascal Ballet AU - Gibin Powathil TI - Hybrid data-based modelling in oncology: successes, challenges and hopes JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019026/ DO - 10.1051/mmnp/2019026 LA - en ID - 10_1051_mmnp_2019026 ER -
%0 Journal Article %A Angélique Stéphanou %A Pascal Ballet %A Gibin Powathil %T Hybrid data-based modelling in oncology: successes, challenges and hopes %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019026/ %R 10.1051/mmnp/2019026 %G en %F 10_1051_mmnp_2019026
Angélique Stéphanou; Pascal Ballet; Gibin Powathil. Hybrid data-based modelling in oncology: successes, challenges and hopes. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 21. doi: 10.1051/mmnp/2019026
[1] , , Personalizing oncology treatments by predicting drug efficacy, side-effects, and improved therapy: mathematics, statistics, and their integration Wiley Interdiscip. Rev. Syst. Biol. Med 2014 239 253
[2] , , , , , , , The biology and mathematical modelling of glioma invasion: a review J. Roy. Soc. Interface 2017 20170490
[3] , , The mathematics of cancer: integrating quantitative models Nat. Rev. Cancer 2015 730 745
[4] , , , Integrating intracellular dynamics using compucell3d and bionetsolver: applications to multiscale modelling of cancer cell growth and invasion PLOS ONE 2012 1 17
[5] , Mathematical oncology Bull. Math. Biol 2018 945 953
[6] , , , , , , , , , , , From patient-specific mathematical neuro-oncology to precision medicine Front. Oncol 2013 62
[7] , Physiologically based mathematical models to optimize therapies against metastatic colorectal cancer: a mini-review Curr. Pharmaceut. Des 2014 37 48
[8] , , , , Multiscale design of cell-type specific pharmacokinetic/ pharmacodynamic models for personalized medicine: application to temozolomide in brain tumors CPT Pharmacometr. Syst. Pharmacol 2014 e112
[9] , , , , Systems chronotherapeutics Pharmacolog. Rev 2017 161 199
[10] P. Ballet, SimCells, an advanced software for multicellular modeling: application to tumoral and blood vessel co-development, Working paper (unpublished) (2018).
[11] , , , , Computational oncology-mathematical modelling of drug regimens for precision medicine Nat. Rev. Clin. Oncol 2016 242 254
[12] , Homeostasis back and forth: an ecoevolutionary perspective of cancer Cold Spring Harbor Perspect. Med 2017 a028332
[13] , Smt or toft? How the two main theories of carcinogenesis are made (artificially) incompatible Acta Biotheor 2015 257 267
[14] , Smt and toft integrable after all: a reply to bizzarri and cucina Acta Biotheor 2017 81 85
[15] , Smt and toft: why and how they are opposite and incompatible paradigms Acta Biotheor 2016 221 239
[16] Physiologically based pharmacokinetic and pharmacodynamic modeling in cancer drug development: status, potential and gaps Exp. Opin. Drug Metab. Toxicol 2015 743 756
[17] , , , , Bone marrow infiltration by multiple myeloma causes anemia by reversible disruption of erythropoiesis Am. J. Hematol 2016 371 378
[18] , , , , A hybrid computation model to describe the progression of multiple myeloma and its intra-clonal heterogeneity Computation 2017 16
[19] , , , , , , , , Combining radiation with hyperthermia: a multiscale model informed by in vitro experiments J. Roy. Soc. Interface 2018 20170681
[20] , , , , Towards the design of a patient-specific virtual tumour Comput. Math. Methods Med 2016 7851789
[21] , , , , , Current mathematical models for cancer drug discovery Exp. Opin. Drug Discov 2017 785 799
[22] The mathematical modelling of tumour angiogenesis and invasion Acta Biotheor 1995 387 402
[23] , , , , Patient specific image driven evaluation of the aggressiveness of metastases to the lung Med. Image Comput. Comput. Assist Interv 2014 553 560
[24] , , , , , Predictive computational modeling to define effective treatment strategies for bone metastatic prostate cancer Sci. Rep 2016 29384
[25] , , , , Availability of evidence of benefits on overall survival and quality of life of cancer drugs approved by European medicines agency: retrospective cohort study of drug approvals 2009–13 BMJ 2017 j4530
[26] , Simulating cancer: computational models in oncology Front. Oncol 2013 233
[27] , , Organs-on-chips at the frontiers of drug discovery Nat. Rev. Drug Discov 2015 248 260
[28] , , , , , , , , , , , , , P. Nony and CRESim project group, Mathematical model of t-cell lymphoblastic lymphoma: disease, treatment, cure or relapse of a virtual cohort of patients Math. Med. Biol 2018 25 47
[29] , Evolution of acquired resistance to anti-cancer therapy J. Theor. Biol 2014 10 20
[30] , , , , Spatial heterogeneity and evolutionary dynamics modulate time to recurrence in continuous and adaptive cancer therapies Cancer Res 2018 2127 2139
[31] , , Pharmacokinetic/pharmacodynamic modeling for drug development in oncology Am. Soc. Clin. Oncol. Annu. Meet 2017 210 215
[32] , Evolution of cell motility in an individual-based model of tumour growth J. Theor. Biol 2009 67 83
[33] , , , , PhysiCell: an open source physics-based cell simulator for 3-D multicellular systems PLoS Comput. Biol 2018 e1005991
[34] N. Glade and A. Stéphanou, Le vivant discret et continu – Modes de représentation en biologie théorique. Editions Matériologiques, Paris (2013).
[35] , Simulation of biological cell sorting using a two-dimensional extended potts model Phys. Rev. Lett 1992 2013 2016
[36] , , , , , , Microvessel chaste: an open library for spatial modeling of vascularized tissue Biophys. J 2017 1767 1772
[37] , , What does not kill a tumour may make it stronger: in silico insights into chemotherapeutic drug resistance J. Theor. Biol 2018 253 267
[38] , High drug attrition rates: where are we going wrong? Nat. Rev. Clin. Oncol. 2011 189 190
[39] , , , , Patient-specific mathematical neuro-oncology: using a simple proliferation and invasion tumor model to inform clinical practice Bull. Math. Biol 2015 846 856
[40] , , , , , , , , Mathematical models of tumor cell proliferation: a review of the literature Exp. Rev. Anticancer Therapy 2018 1 16
[41] , , , , Mathematical and computational modeling in complex biological systems BioMed Res. Int 2017 5958321
[42] , , , Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues J. Roy. Soc. Interface 2018 20170703
[43] , , , , , , Strategies of eradicating glioma cells: a multi-scale mathematical model with mir-451-ampk-mtor control PLoS ONE 2015 e0114370j
[44] , Can the pharmaceutical industry reduce the attrition rates? Nat. Rev. Drug Discov. 2004 711 715
[45] , , , , , Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models PLOS ONE 2010 1 8
[46] , , , , , , , Hybrid model of erythtropoiesis and leukemia treatment with cytosine arabinoside SIAM J. Appl. Math 2011 2246 2268
[47] Dynamics of tumor growth Br. J. Cancer 1964 490 502
[48] , , , , On the importance of the submicrovascular network in a computational model of tumour growth Microvasc. Res 2012 188 204
[49] , , , , Solid tumor models for the assessment of different treatment modalities: I. Radiation-induced changes in growth rate characteristics of a solid tumor model Proc. Natl. Acad. Sci. U.S.A 1975 2662 2666
[50] , , , Patient-calibrated agent-based modelling of ductal carcinoma in situ (DCIS): from microscopic measurements to macroscopic predictions of clinical progression J. Theor. Biol 2012 122 140
[51] , , , , , , , Progress towards computational 3-d multicellular systems biology Adv. Exp. Med. Biol 2016 225 246
[52] , , , , , , Simulating PDGF-driven glioma growth and invasion in an anatomically accurate brain domain Bull. Math. Biol 2018 1292 1309
[53] , , , , , , , , , , , , , , , , Chaste: an open source c++ library for computational physiology and biology PLOS Comput. Biol 2013 1 8
[54] , The hitchhiker’s guide to the cancer galaxy. How two critics missed their destination Orgnisms. J. Biol. Sci. 2017 37 48
[55] , , , , , Computational screening of tip and stalk cell behavior proposes a role for apelin signaling in sprout progression PLOS ONE 2016 1 31
[56] , , , Microfluidic organ/body-on-a-chip devices at the convergence of biology and microengineering Sensors (Basel, Switzerland) 2015 31142 31170
[57] , , , , , Computational oncology J. Oncopathol. Clin. Res 2018
[58] , , , , , , , , , , , , , , , , , , Chaste: a test-driven approach to software development for biological modelling Comp. Phys. Commun 2009 2452 2471
[59] , , , , , Predicting patient-specific radiotherapy protocols based on mathematical model choice for proliferation saturation index Bull. Math. Biol 2018 1195 1206
[60] , , , , A computational framework to assess the efficacy of cytotoxic molecules and vascular disrupting agents against solid tumours MMNP 2012 49 77
[61] , , Systems oncology: towards patient-specific treatment regimes informed by multiscale mathematical modelling Semin. Cancer Biol 2015 13 20
[62] , , , Bystander effects and their implications for clinical radiation therapy: insights from multiscale in silico experiments J. Theor. Biol 2016 1 14
[63] , , , , , , , , , A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation Radiat. Oncol 2015 159
[64] , Carcinogenesis explained within the context of a theory of organisms Progr. Biophys. Molec. Biol 2016 70 76
[65] , The tissue organization field theory of cancer: a testable replacement for the somatic mutation theory BioEssays 2011 332 340
[66] , Hybrid modelling in biology: a classification review MMNP 2016 37 48
[67] , , , Mathematical modelling of flow in 2d and 3d vascular networks: applications to antiangiogenic and chemotherapeutic drug stategies Math. Comp. Model 2005 1137 1156
[68] , , , , , How tumour-induced vascular changes alter angiogenesis: Insights from a computational model J. Theor. Biol 2017 211 226
[69] , , , Systems biology, systems medicine, systems pharmacology: the what and the why Acta Biotheor 2018 345 365
[70] M.H. Swat, G.L. Thomas, J.M. Belmonte, A. Shirinifard, D. Hmeljak and J.A. Glazier, Multi-scale modeling of tissues using compucell3d. In Vol. 110 of Computational Methods in Cell Biology. Edited by Anand R. Asthagiri and Adam P. Arkin. Academic Press (2012) 325–366.
[71] , , , , , , , , , , , , , , , , , , , , An integrative computational model for intestinal tissue renewal Cell Proliferation 2009 617 636
[72] , , , , , , , , , , , Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model Cancer Res 2009 9133 9140
[73] , , , , , , , Spatial modeling of drug delivery routes for treatment of disseminated ovarian cancer Cancer Res 2016 1320 1334
[74] Integrating imaging data into predictive biomathematical and biophysical models of cancer ISRN Biomath 2012
[75] , , Quantitative multimodality imaging in cancer research and therapy Nat. Rev. Clin. Oncol 2014 670 680
[76] , , , , , , , , , , Multi-scale modeling in clinical oncology: opportunities and barriers to success Ann. Biomed. Eng 2016 2626 2641
Cité par Sources :