Theory of optimal harvesting for a size structured model of fish
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 1

Voir la notice de l'article provenant de la source EDP Sciences

This paper investigates the maximum principle for a nonlinear size structured model that describes the optimal management of the fish resources taking into account harvesting the fish and putting the fry. First, we show the existence of a unique non-negative solution of the system, and give a comparison principle. Next, we prove the existence of optimal policies by using maximizing sequence and Mazur’s theorem in convex analysis. Then, we obtain necessary optimality conditions by using tangent-normal cones and adjoint system techniques. Finally, some examples and numerical results demonstrate the effectiveness of the theoretical results in our paper.
DOI : 10.1051/mmnp/2019006

Rong Liu 1 ; Guirong Liu 1

1 School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, PR China.
@article{10_1051_mmnp_2019006,
     author = {Rong Liu and Guirong Liu},
     title = {Theory of optimal harvesting for a size structured model of fish},
     journal = {Mathematical modelling of natural phenomena},
     eid = {1},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2019006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019006/}
}
TY  - JOUR
AU  - Rong Liu
AU  - Guirong Liu
TI  - Theory of optimal harvesting for a size structured model of fish
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019006/
DO  - 10.1051/mmnp/2019006
LA  - en
ID  - 10_1051_mmnp_2019006
ER  - 
%0 Journal Article
%A Rong Liu
%A Guirong Liu
%T Theory of optimal harvesting for a size structured model of fish
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019006/
%R 10.1051/mmnp/2019006
%G en
%F 10_1051_mmnp_2019006
Rong Liu; Guirong Liu. Theory of optimal harvesting for a size structured model of fish. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 1. doi: 10.1051/mmnp/2019006

[1] S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics. Kluwer Academic Publishers, Dordrecht (2000).

[2] L.I. Aniţa, S. Aniţa Note on some periodic optimal harvesting problems for age-structured population dynamics Appl. Math. Comput. 2016 21 30

[3] L.I. Aniţa, S. Aniţa, V. Arnǎutu Optimal harvesting for periodic age-dependent population dynamics with logistic term Appl. Math. Comput. 2009 2701 2715

[4] G.D. Blasio, M. Iannelli, E. Sinestrari Approach to equilibrium in age structured populations with an increasing recruitment process J. Math. Biol. 1982 371 382

[5] B. Ebenman and L. Persson, Size-Structured Populations: Ecology and Evolution. Springer-Verlag, Berlin (1988).

[6] J.Z. Farkas Net reproduction functions for nonlinear structured population models MMNP 2018 32

[7] J.Z. Farkas, T. Hagen Linear stability and positivity results for a generalized size-structured daphnia model with inflow Appl. Anal. 2007 1087 1103

[8] J.Z. Farkas, T. Hagen Stability and regularity results for a size-structured population model J. Math. Anal. Appl. 2007 119 136

[9] J.Z. Farkas, T. Hagen Asymptotic behavior of size-structured populations via juvenile-adult interaction Discrete Continuous Dyn. Syst. Ser. B 2008 249 266

[10] J.Z. Farkas, A.Y. Morozov Modelling effects of rapid evolution on persistence and stability in structured predator-prey systems MMNP 2014 26 46

[11] K.R. Fister, S. Lenhart Optimal harvesting in an age-structured predator-prey model Appl. Math. Optim. 2006 1 15

[12] Z.R. He, Y. Liu An optimal birth control problem for a dynamical population model with size-structure Nonlinear Anal. Real World Appl 2012 1369 1378

[13] Z.R. He, M.S. Wang, Z.E. Ma Optimal birth control problem for nonlinear age-structured population dynamics Discrete Contin. Dyn. Syst. Ser. B 2004 589 594

[14] N. Hritonenko, Y. Yatsenko, R.U. Goetz, A. Xabadia Maximum principle for a size-structured model of forest and carbon sequestration management Appl. Math. Lett 2008 1090 1094

[15] N. Hritonenko, Y. Yatsenko, R.U. Goetz, A. Xabadia A bang-bang regime in optimal harvesting of size-structured populations Nonlinear Anal 2009 e2331 e2336

[16] N. Kato Maximum principle for optimal harvesting in linear size-structured population Math. Popul. Stud 2008 123 136

[17] N. Kato Optimal harvesting for nonlinear size-structured population dynamics J. Math. Anal. Appl 2008 1388 1398

[18] Y. Liu, Z.R. He Optimal harvesting of a size-structured predator-prey model Acta Math. Sci. Ser. A Chin. Ed 2012 90 102

[19] R. Liu, G.R. Liu Optimal birth control problems for a nonlinear vermin population model with size-structure J. Math. Anal. Appl 2017 265 291

[20] R. Liu, G.R. Liu Maximum principle for a nonlinear size-structured model of fish and fry management Nonlinear Anal.-Model 2018 533 552

[21] R. Liu, F.Q. Zhang, Y.M. Chen Optimal contraception control for a nonlinear population model with size structure and a separable mortality Discrete Contin. Dyn. Syst. Ser. B 2016 3603 3618

[22] Z.X. Luo Optimal harvesting problem for an age-dependent n-dimensional food chain diffusion model Appl. Math. Comput. 2007 1742 1752

[23] P. Magal and S. Ruan (Eds.), Structured-Population Models in Biology and Epidemiology. Springer, Berlin (2008).

[24] A. Morozov Prefacce modelling in ecology, epidemiology and evolution Math. Model. Nat. Phenom 2018 E1

[25] F.Q. Zhang, R. Liu, Y.M. Chen Optimal harvesting in a periodic food chain model with size structures in predators Appl. Math. Optim. 2017 229 251

Cité par Sources :