T.O. Shepelyuk 1, 2, 3 ; M.A. Panteleev 1, 2, 4, 5 ; A.N. Sveshnikova 1, 2, 4, 6
@article{10_1051_mmnp_201611606,
author = {T.O. Shepelyuk and M.A. Panteleev and A.N. Sveshnikova},
title = {Computational modeling of {Quiescent} {Platelet} {Energy} {Metabolism} in the {Context} of {Whole-body} {Glucose} {Turnover}},
journal = {Mathematical modelling of natural phenomena},
pages = {91--101},
year = {2016},
volume = {11},
number = {6},
doi = {10.1051/mmnp/201611606},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611606/}
}
TY - JOUR AU - T.O. Shepelyuk AU - M.A. Panteleev AU - A.N. Sveshnikova TI - Computational modeling of Quiescent Platelet Energy Metabolism in the Context of Whole-body Glucose Turnover JO - Mathematical modelling of natural phenomena PY - 2016 SP - 91 EP - 101 VL - 11 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611606/ DO - 10.1051/mmnp/201611606 LA - en ID - 10_1051_mmnp_201611606 ER -
%0 Journal Article %A T.O. Shepelyuk %A M.A. Panteleev %A A.N. Sveshnikova %T Computational modeling of Quiescent Platelet Energy Metabolism in the Context of Whole-body Glucose Turnover %J Mathematical modelling of natural phenomena %D 2016 %P 91-101 %V 11 %N 6 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611606/ %R 10.1051/mmnp/201611606 %G en %F 10_1051_mmnp_201611606
T.O. Shepelyuk; M.A. Panteleev; A.N. Sveshnikova. Computational modeling of Quiescent Platelet Energy Metabolism in the Context of Whole-body Glucose Turnover. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 6, pp. 91-101. doi: 10.1051/mmnp/201611606
[1] , , , New fundamentals in hemostasis Physiol Rev 2013 327 358
[2] , , Energy metabolism in human platelets: interrelationship between glycolysis and oxidative metabolism Blood 1970 159 68
[3] , , , , , Metabolic plasticity in resting and thrombin activated platelets PLoS One 2015 e0123597
[4] Studies on human platelet glycolysis. Effect of glucose, cyanide, insulin, citrate, and agglutination and contraction on platelet glycolysis J. Clin. Invest. 1967 409 17
[5] , Interrelationships among platelet responses: studies on the burst in proton liberation, lactate production, and oxygen uptake during platelet aggregation and Ca2+ secretion Blood 1981 956 66
[6] , , , Glutamine Utilization in Resting and Stimulated Platelets J. Biochem. 1993 163 166
[7] , , , , , Fuel Choices by Human Platelets in Human Plasma Eur. J. Biochem 1997 161 167
[8] , , , , Alternative Fuels for Platelet Storage: A Metabolic Study Vox Sang 1990 146 152
[9] , , Adenine nucleotide metabolism of blood platelets IX. Time course of secretion and changes in energy metabolism in thrombin-treated platelets Biochim. Biophys. Acta - Gen. Subj 1976 633 643
[10] , Relation between energy production and adenine nucleotide metabolism in human blood platelets Biochim. Biophys. Acta - Bioenerg 1980 107 116
[11] , Platelet storage at 22 degrees C J. Clin. Invest 1971 370 7
[12] , , , Platelet functions and energy metabolism in a patient with hexokinase deficiency Blood 1984 147 153
[13] , , Regulation of glycolytic flux in human platelets relation between energy production by glyco(geno)lysis and energy consumption Biochim. Biophys. Acta - Gen. Subj 1978 241 250
[14] Activation of glycogen phosphorylase in blood platelets Blood 1967 321 330
[15] , , Lipid metabolism in human platelets. I. Evidence for a complete fatty acid synthesizing system J. Clin. Invest 1969 156 164
[16] , , Pathways of fatty acid metabolism in human platelets J. Clin. Invest. 1970 128 139
[17] , , , , Network reconstruction of platelet metabolism identifies metabolic signature for aspirin resistance Sci. Rep. 2014 3925
[18] , , , A novel technique for rapid determination of energy consumption in platelets. Demonstration of different energy consumption associated with three secretory responses Biochem. J. 1983 145 155
[19] , , Computational study of an augmented minimal model for glycaemia control Conf. Proc. … Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf 2008 5445 8
[20] , , What is flux balance analysis? Nat. Biotechnol 2010 245 8
[21] , , Flux balance analysis in the era of metabolomics Brief. Bioinform 2006 140 50
[22] , Formulating genome-scale kinetic models in the post-genome era Mol. Syst. Biol. 2008 171
[23] , , , , Reconstruction of biochemical networks in microorganisms. Nat. Rev. Microbiol. 2009 129 43
[24] , , , , , The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways Blood 2012 e73 e82
[25] , , , , , A Generic Integrated Physiologically based Whole-body Model of the Glucose-Insulin-Glucagon Regulatory System CPT Pharmacometrics Syst. Pharmacol. 2013 e65
[26] , , , , , Computational modeling of biochemical networks using COPASI Methods Mol.Biol. 2009 17 59
[27] T. Back, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms, Oxford university press, Oxford, 1996.
[28] , , , , , Glucose uptake via glucose transporter 3 by human platelets is regulated by protein kinase B. J. Biol. Chem. 2005 32625 33
[29] A. Makhorin, GNU linear programming kit, Moscow Aviat. Inst. (2001).
[30] , , , , , COPASI–a COmplex PAthway SImulator Bioinformatics 2006 3067 3074
[31] , , Simultaneous measurement of aggregation, secretion, oxygen uptake, proton production, and intracellular metabolites in the same platelet suspension Anal. Biochem. 1979 387 393
[32] , , Platelet Glycolytic Enzymes: Effect of Cellular Disruption Procedures on Activity Br. J. Haematol. 1970 145 157
[33] J.T. Sorensen, A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes, (1985). http://dspace.mit.edu/handle/1721.1/15234.
[34] , Energy metabolism of human neutrophils during phagocytosis J. Clin. Invest. 1982 550 7
[35] , , The effects of total starvation upon the levels of circulating glucagon and insulin in man J. Clin. Invest. 1963 1031 9
[36] , , , Sensitivity analysis for chemical models Chem.Rev. 2005 2811 2828
Cité par Sources :