Voir la notice de l'article provenant de la source EDP Sciences
B. Perthame 1 ; P. E. Souganidis 2
@article{10_1051_mmnp_201611411,
author = {B. Perthame and P. E. Souganidis},
title = {Rare {Mutations} {Limit} of a {Steady} {State} {Dispersal} {Evolution} {Model}},
journal = {Mathematical modelling of natural phenomena},
pages = {154--166},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {2016},
doi = {10.1051/mmnp/201611411},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611411/}
}
TY - JOUR AU - B. Perthame AU - P. E. Souganidis TI - Rare Mutations Limit of a Steady State Dispersal Evolution Model JO - Mathematical modelling of natural phenomena PY - 2016 SP - 154 EP - 166 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611411/ DO - 10.1051/mmnp/201611411 LA - en ID - 10_1051_mmnp_201611411 ER -
%0 Journal Article %A B. Perthame %A P. E. Souganidis %T Rare Mutations Limit of a Steady State Dispersal Evolution Model %J Mathematical modelling of natural phenomena %D 2016 %P 154-166 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611411/ %R 10.1051/mmnp/201611411 %G en %F 10_1051_mmnp_201611411
B. Perthame; P. E. Souganidis. Rare Mutations Limit of a Steady State Dispersal Evolution Model. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 4, pp. 154-166. doi: 10.1051/mmnp/201611411
[1] , , Existence of nontrivial steady states for populations structured with respect to space and a continuous trait Commun. Pure Appl. Anal. 83 96 2012
[2] M. Baar, A. Bovier, N. Champagnat. From stochastic, individual-based models to the canonical equation of adaptive dynamics - in one step. http://arxiv.org/abs/1505.02421 arXiv:1505.02421, 2015. To appear in Ann. Appl. Probab.
[3] , , Traveling wave solutions to combustion models and their singular limits SIAM J. Math. Anal. 1985 1207 1242
[4] H. Berestycki, T. Jin, L. Silvestre. Propagation in a nonlocal reaction diffusion equation with spatial and genetic trait structure. http://arxiv.org/abs/1411.2019 arXiv:1411.2019, 2014. To appear in Nonlinearity.
[5] N. Berestycki, C. Mouhot, G. Raoul. Existence of self-accelerating fronts for a non-local reaction-diffusion equation. http://arxiv.org/abs/1512.00903 ArXiv:1512.00903, (2015).
[6] , Travelling waves for the cane toads equation with bounded traits Nonlinearity 2233 2014
[7] , Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts Archive for Rational Mechanics and Analysis 571 617 2015
[8] , , , , , , Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration C. R. Math. Acad. Sci. Paris 761 766 2012
[9] , A Hamilton-Jacobi limit for a model of population structured by space and trait Comm. Math Sci. 1431 1452 2015
[10] , Weak convergence of a mass-structured individual-based model Applied Mathematics & Optimization 2015 37 73
[11] , , Approximating the ideal free distribution via reaction-diffusion-advection equations J. Differential Equations 2008
[12] , , Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models Th. Pop. Biol. 297 321 2006
[13] , , Evolutionary stability of ideal free nonlocal dispersal J. Biol. Dyn. 2012
[14] , Propagation speed of travelling fronts in non local reaction-Diffusion equations Nonlin. Anal. 2005 797 819
[15] , , , On selection dynamics for continuous structured populations Comm. Math. Sci. 729 747 2008
[16] A beginner's guide to adaptive dynamics Mathematical modeling of population dynamics. Banach Center Publications 2004 47 86
[17] , , , The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach Th. Pop. Biol. 257 271 2005
[18] , , , The evolution of slow dispersal rates: a reaction Diffusion model J. Math. Biol. 1998 61 83
[19] The perturbed test function method for viscosity solutions of nonlinear PDE Proc. Roy. Soc. Edinburgh 1989 359 375
[20] , , , Dynamics of adaptation and evolutionary branching Physical Review Letters 1997 2024 2027
[21] , The evolution of conditional dispersal strategies in spatially heterogeneous habitats Bull. Math. Biol. 2009
[22] Can spatial variation alone lead to selection for dispersal? Theoret. Popul. Biol. 1983 244 251
[23] J. Hofbauer, K. Sigmund, Evolutionary games and population dynamics. London Mathematical Society, Student texts 7. Cambridge University Press (2002).
[24] , , , The evolution of dispersal J. Math. Biol. 2003 483 517
[25] , Selection dynamics with competition J. Math. Biol. 2011 493 517
[26] K.-Y. Lam Y. Lou. A mutation-selection model for evolution of random dispersal. http://arxiv.org/pdf/1506.00662.pdf ArXiv 1506.00662, 2015.
[27] Neumann type boundary conditions for Hamilton-Jacobi equations Duke Math. J. 1985 793 820
[28] , , Dirac mass dynamics in multidimensional nonlocal parabolic equations Comm. Partial Differential Equations 1071 1098 2011
[29] The theory of games and the evolution of animal conicts J. Theor. Biol. 1974 209 221
[30] , Asymptotic analysis of a selection model with space J. Math. Pures et Appl 2015 1108 1118
[31] , Uniqueness in a class of Hamilton-Jacobi equations with constraints Comptes Rendus Ac. Sc. Paris, Mathematiques 2015 489 494
[32] , A class of Hamilton-Jacobi equations with constraint: uniqueness and constructive approach Journal of Differential Equations 4717 4738
[33] , , , Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity J. Evol. Biol. 2003 143 53
[34] , Dirac concentrations in Lotka-Volterra parabolic PDEs Indiana Univ. Math. J. 3275 3301 2008
[35] , , Evolutionary stable diffusive dispersal DCDS(B) 2014 3319 3340
[36] How does it feel to be like a rolling stone? Ten questions about dispersal evolution Annu. Rev. Ecol. Evol. Syst. 2007 231 253
[37] On a model of a population with variable motility Mathematical Models and Methods in Applied Sciences 1961 2014 2015
Cité par Sources :