Voir la notice de l'article provenant de la source EDP Sciences
A. Morozov 1, 2 ; S. Petrovskii 1
@article{10_1051_mmnp_201611401,
author = {A. Morozov and S. Petrovskii},
title = {Modelling in {Ecology,} {Epidemiology} and {Ecoepidemiology:} {Introduction} to the {Special} {Issue}},
journal = {Mathematical modelling of natural phenomena},
pages = {1--4},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {2016},
doi = {10.1051/mmnp/201611401},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611401/}
}
TY - JOUR AU - A. Morozov AU - S. Petrovskii TI - Modelling in Ecology, Epidemiology and Ecoepidemiology: Introduction to the Special Issue JO - Mathematical modelling of natural phenomena PY - 2016 SP - 1 EP - 4 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611401/ DO - 10.1051/mmnp/201611401 LA - en ID - 10_1051_mmnp_201611401 ER -
%0 Journal Article %A A. Morozov %A S. Petrovskii %T Modelling in Ecology, Epidemiology and Ecoepidemiology: Introduction to the Special Issue %J Mathematical modelling of natural phenomena %D 2016 %P 1-4 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611401/ %R 10.1051/mmnp/201611401 %G en %F 10_1051_mmnp_201611401
A. Morozov; S. Petrovskii. Modelling in Ecology, Epidemiology and Ecoepidemiology: Introduction to the Special Issue. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 4, pp. 1-4. doi: 10.1051/mmnp/201611401
[1] , When can we trust our model predictions? Unearthing structural sensitivity in biological systems Proc. R. Soc. A. 2012
[2] , The impact of fragmented habitat’s size and shape on populations with Allee effect Math. Mod. Nat. Phen. 2016 5 16
[3] , , , , Aggregation methods in dynamical systems and applications in population and community dynamics Phys. Life. Rev. 2008 79 105
[4] , , Fast dispersal in semelparous populations Math. Mod. Nat. Phen. 2016 121 135
[5] , Tri-trophic plankton models revised: importance of space, food web structure and functional response parametrisation Math. Mod. Nat. Phen. 2016 17 34
[6] Single-species spatial dynamics may contribute to long-term rarity and commonness Ecology 1985 335 343
[7] , , Optimal control for a SIR epidemic model with nonlinear incidence rate Math. Mod. Nat. Phen. 2016 90 105
[8] , , , Revisiting the stability of spatially heterogeneous predatorprey systems under eutrophication Bull. Math. Biol. 2015 1886 1908
[9] , , , The evolution of dispersal J. Math. Biol. 2003 483 517
[10] S.E. Kingsland. Modeling nature: Episodes in the history of population ecology. 2d ed. Chicago: Univ. of Chicago Press, 1995.
[11] Some demographic and genetic consequences of environmental heterogeneity for biological control Bull. Entomol. Soc. Am. 1969 237 240
[12] M.A. Lewis, S.V. Petrovskii, J. Potts. The Mathematics Behind Biological Invasions. Interdisciplinary Applied Mathematics, Vol. 44. Springer, 2016.
[13] , The impact of hybrid quarantine strategies and delay factor on viral prevalence in computer networks Math. Mod. Nat. Phen. 2016 106 120
[14] J. Maynard Smith. Models in Ecology. Cambridge Univ. Press, 1974.
[15] , Voltage oscillations in the barnacle giant muscle fiber Biophys. J. 1981 193 213
[16] , From spatially explicit ecological models to mean-field dynamics: The state of the art and perspectives Ecol. Compl. 2012 1 11
[17] , Effects of fast Hawk-Dove-Bully game on the dynamics of a stage-structured population Math. Mod. Nat. Phen. 2016 136 154
[18] , , Persistence of structured populations with and without the Allee effect under adverse environmental conditions Bull. Math. Biol. 2008 412 437
[19] , Behaviourally structured populations persist longer under harsh environmental conditions Ecol. Lett. 2003 455 462
[20] , Rare mutations limit of a steady state dispersal evolution model Math. Mod. Nat. Phen. 2016 155 167
[21] , , Investigation of dynamics of a virus-antivirus model in complex network Physica A 2015 533 540
[22] How does it feel to be like a rolling stone? Ten questions about dispersal evolution Annu. Rev. Ecol. Evol. Syst. 2007 231 253
[23] , , , Detecting tipping points in ecological models with sensitivity analysis Math. Mod. Nat. Phen. 2016 48 73
[24] Mathematical modelling of metapopulation dynamics: Revisiting its meaning Math. Mod. Nat. Phen. 2016 35 47
[25] , , , , Fast sampling of evolving systems with periodic trajectories Math. Mod. Nat. Phen. 2016 74 89
[26] I. Yu. Tyukin. Adaptation in Dynamical Systems. Cambridge Univ. Press, 2011.
[27] , , , , Stability analysis of a SEIQV epidemic model for rapid spreading worms Comput. Secur. 2010 410 418
Cité par Sources :