A Time Discretization Scheme for a Nonlocal Degenerate Problem Modelling Resistance Spot Welding
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 6, pp. 90-112.

Voir la notice de l'article provenant de la source EDP Sciences

In the current work we construct a nonlocal mathematical model describing the phase transition occurs during the resistance spot welding process in the industry of metallurgy. We then consider a time discretization scheme for solving the resulting nonlocal moving boundary problem. The scheme consists of solving at each time step a linear elliptic partial differential equation and then making a correction to account for the nonlinearity. The stability and error estimates of the developed scheme are investigated. Finally some numerical results are presented confirming the efficiency of the developed numerical algorithm.
DOI : 10.1051/mmnp/201510608

N. I. Kavallaris 1 ; Y. Yan 1

1 Department of Mathematics, University of Chester Thornton Science Park Pool Lane, Ince, Chester CH2 4NU, UK
@article{MMNP_2015_10_6_a7,
     author = {N. I. Kavallaris and Y. Yan},
     title = {A {Time} {Discretization} {Scheme} for a {Nonlocal} {Degenerate} {Problem} {Modelling} {Resistance} {Spot} {Welding}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {90--112},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {2015},
     doi = {10.1051/mmnp/201510608},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510608/}
}
TY  - JOUR
AU  - N. I. Kavallaris
AU  - Y. Yan
TI  - A Time Discretization Scheme for a Nonlocal Degenerate Problem Modelling Resistance Spot Welding
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 90
EP  - 112
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510608/
DO  - 10.1051/mmnp/201510608
LA  - en
ID  - MMNP_2015_10_6_a7
ER  - 
%0 Journal Article
%A N. I. Kavallaris
%A Y. Yan
%T A Time Discretization Scheme for a Nonlocal Degenerate Problem Modelling Resistance Spot Welding
%J Mathematical modelling of natural phenomena
%D 2015
%P 90-112
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510608/
%R 10.1051/mmnp/201510608
%G en
%F MMNP_2015_10_6_a7
N. I. Kavallaris; Y. Yan. A Time Discretization Scheme for a Nonlocal Degenerate Problem Modelling Resistance Spot Welding. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 6, pp. 90-112. doi : 10.1051/mmnp/201510608. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510608/

[1] M. R. Sidi Ammi, O. Mul Proc. Estonian Acad. Sci. Phys. Maths. 2007 359 372

[2] S. N. Antontsev, M. Chipot Siberian Math. J. 1997 827 841

[3] J. Bebernes, P. Talaga Comm. Appl. Nonlinear Analysis 1996 79 103

[4] A. E. Berger, H. Brezis, J. C. W. Rogers A numerical method for solving the problem ut − Δf(u) RAIRO Anal. Numer. 1979 297 312

[5] M. Brokate, J. Sprekels. Hysteresis and Phase Transitions Appl.Math. Sci. Springer: New York, 1996.

[6] I.J. Hewitt, A.A. Lacey, R.I. Todd. A Mathematical Model for flash sintering, to appear in Math. Model. Nat. Phenom.

[7] D. Hömberg, E. Rocca Math. Meth. Appl. Sciences 2011 2077 2088

[8] N. I. Kavallaris Proc. Edinb. Math. Soc. 2004 375 395

[9] N. I. Kavallaris, A.A. Lacey, C.V. Nikolopoulos, C. Voong IMA J. Appl. Mathematics 2007 597 616

[10] N. I. Kavallaris, T. Nadzieja Proc. Edinb. Math. Soc. 2007 389 409

[11] N.I. Kavallaris, T. Suzuki Differential Integral Equations 2007 293 308

[12] A. A. Lacey European. J. Appl. Math. 1995 127 144

[13] E.A. Latos, D. E. Tzanetis Proc. Edinb. Math. Soc. 2010 195 209

[14] E.A. Latos, D. E. Tzanetis Nonlinear Differ. Equ. Appl. 2010 137 151

[15] R. H. Nochetto, C. Verdi SIAM J. Numer. Anal. 1988 784 814

[16] R. H. Nochetto, C. Verdi Mathematics of Computation 1988 27 53

[17]

[18] I. Steinbach, M. Apel Physica D 2006 153 160

[19] D. E. Tzanetis Electron. J. Diff. Eqns 2002 1 26

[20] D. E. Tzanetis, P. M. Vlamos Nonlin. Analysis 2001 443 454

[21] D. E. Tzanetis, P. M. Vlamos Proc. Edinb. Math. Soc. 2001 58559 5

[22] J.L. Vazquez. The Porous Medium Equation: Mathematical Theory, Oxford Science Publications, 2007.

[23] C. Verdi Calcolo 1985 351 381

[24] G. Wolansky Appl. Anal. 1997 291 321

[25] Ya. B. Zel’dovich, Yu.P. Raizer. Physics of Shock Wavesand High-Temperature Hydrodynamic Phenomena, Vol. II, Academic Press, New York.

Cité par Sources :