Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2015_10_6_a7, author = {N. I. Kavallaris and Y. Yan}, title = {A {Time} {Discretization} {Scheme} for a {Nonlocal} {Degenerate} {Problem} {Modelling} {Resistance} {Spot} {Welding}}, journal = {Mathematical modelling of natural phenomena}, pages = {90--112}, publisher = {mathdoc}, volume = {10}, number = {6}, year = {2015}, doi = {10.1051/mmnp/201510608}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510608/} }
TY - JOUR AU - N. I. Kavallaris AU - Y. Yan TI - A Time Discretization Scheme for a Nonlocal Degenerate Problem Modelling Resistance Spot Welding JO - Mathematical modelling of natural phenomena PY - 2015 SP - 90 EP - 112 VL - 10 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510608/ DO - 10.1051/mmnp/201510608 LA - en ID - MMNP_2015_10_6_a7 ER -
%0 Journal Article %A N. I. Kavallaris %A Y. Yan %T A Time Discretization Scheme for a Nonlocal Degenerate Problem Modelling Resistance Spot Welding %J Mathematical modelling of natural phenomena %D 2015 %P 90-112 %V 10 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510608/ %R 10.1051/mmnp/201510608 %G en %F MMNP_2015_10_6_a7
N. I. Kavallaris; Y. Yan. A Time Discretization Scheme for a Nonlocal Degenerate Problem Modelling Resistance Spot Welding. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 6, pp. 90-112. doi : 10.1051/mmnp/201510608. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510608/
[1] Proc. Estonian Acad. Sci. Phys. Maths. 2007 359 372
,[2] Siberian Math. J. 1997 827 841
,[3] Comm. Appl. Nonlinear Analysis 1996 79 103
,[4] A numerical method for solving the problem ut − Δf(u) RAIRO Anal. Numer. 1979 297 312
, ,[5] M. Brokate, J. Sprekels. Hysteresis and Phase Transitions Appl.Math. Sci. Springer: New York, 1996.
[6] I.J. Hewitt, A.A. Lacey, R.I. Todd. A Mathematical Model for flash sintering, to appear in Math. Model. Nat. Phenom.
[7] Math. Meth. Appl. Sciences 2011 2077 2088
,[8] Proc. Edinb. Math. Soc. 2004 375 395
[9] IMA J. Appl. Mathematics 2007 597 616
, , ,[10] Proc. Edinb. Math. Soc. 2007 389 409
,[11] Differential Integral Equations 2007 293 308
,[12] European. J. Appl. Math. 1995 127 144
[13] Proc. Edinb. Math. Soc. 2010 195 209
,[14] Nonlinear Differ. Equ. Appl. 2010 137 151
,[15] SIAM J. Numer. Anal. 1988 784 814
,[16] Mathematics of Computation 1988 27 53
,[17]
[18] Physica D 2006 153 160
,[19] Electron. J. Diff. Eqns 2002 1 26
[20] Nonlin. Analysis 2001 443 454
,[21] Proc. Edinb. Math. Soc. 2001 58559 5
,[22] J.L. Vazquez. The Porous Medium Equation: Mathematical Theory, Oxford Science Publications, 2007.
[23] Calcolo 1985 351 381
[24] Appl. Anal. 1997 291 321
[25] Ya. B. Zel’dovich, Yu.P. Raizer. Physics of Shock Wavesand High-Temperature Hydrodynamic Phenomena, Vol. II, Academic Press, New York.
Cité par Sources :