Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2015_10_6_a1, author = {S. Ani\c{t}a}, title = {Stabilization of a {Predator-Prey} {System} with {Nonlocal} {Terms}}, journal = {Mathematical modelling of natural phenomena}, pages = {6--16}, publisher = {mathdoc}, volume = {10}, number = {6}, year = {2015}, doi = {10.1051/mmnp/201510602}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510602/} }
TY - JOUR AU - S. Aniţa TI - Stabilization of a Predator-Prey System with Nonlocal Terms JO - Mathematical modelling of natural phenomena PY - 2015 SP - 6 EP - 16 VL - 10 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510602/ DO - 10.1051/mmnp/201510602 LA - en ID - MMNP_2015_10_6_a1 ER -
S. Aniţa. Stabilization of a Predator-Prey System with Nonlocal Terms. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 6, pp. 6-16. doi : 10.1051/mmnp/201510602. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510602/
[1] Comm. Pure Appl. Anal. 2008 491 512
,[2] Appl. Math. Comput. 2013 10231 10244
, ,[3] Math. Model. Nat. Phenom. 2014 6 19
[4] Nonlin. Anal. Real World Appl. 2009 2026 2035
,[5] Discrete Cont. Dyn. Syst.- B 2009 805 822
, ,[6] V. Barbu. Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, Boston, 1993.
[7] V. Barbu. Partial Differential Equations and Boundary value problems. Kluwer Academic Press, Dordrecht, 1998.
[8] SIAM J. Appl. Math. 1997 327 346
,[9] K. Deimling. Nonlinear Functional Analysis. Springer-Verlag, Berlin, 1985.
[10] Math. Modelling Nat. Phenom. 2006 65 82
, ,[11] Comm. Pure Appl. Anal. 2012 2429 2443
, ,[12] B. Kawohl. Rearrangements and Convexity of Level Sets in PDE. Springer Lecture Notes in Math. 1150, 1985.
[13] J.-L. Lions. Controlabilité Exacte, Stabilisation et Perturbation de Systemes Distribués. RMA 8, Masson, Paris, 1988.
[14] A. Okubo. Diffusion and Ecological Problems: Mathematical Models. Springer-Verlag, Berlin, 1980.
[15] J.D. Murray. Mathematical Biology. II. Spatial Models and Biomedical Applications, 3rd edition. Springer-Verlag, New York, 2003.
[16] M.H. Protter, H.F. Weinberger. Maximum Principles in Differential Equations. Springer-Verlag, New York, 1984.
[17] J. Smoller. Shock Waves and Reaction Diffusion Equations. Springer Verlag, Berlin, 1983.
[18] V. Volpert, V. Vougalter. Stability and instability of solutions of a nonlocal reaction-diffusion equation when the essential spectrum crosses the imaginary axis. Preprint (2014), https://www.ma.utexas.edu/mparc/index − 14.html.
Cité par Sources :