Stabilization of a Predator-Prey System with Nonlocal Terms
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 6, pp. 6-16.

Voir la notice de l'article provenant de la source EDP Sciences

We investigate the zero-stabilizability for the prey population in a predator-prey system via a control which acts in a subregion ω of the habitat Ω, and on the predators only. The dynamics of both interacting populations is described by a reaction-diffusion system with nonlocal terms describing migrations. A necessary condition and a sufficient condition for the zero-stabilizability of the prey population are derived in terms of the sign of the principal eigenvalues to certain non-selfadjoint operators. In case of stabilizability, a constant stabilizing control is indicated. The rate of stabilization corresponding to such a stabilizing control is dictated by the principal eigenvalue of a certain operator. A large principal eigenvalue leads to a fast stabilization to zero of the prey population. A method to approximate all these principal eigenvalues is presented. Some final comments concerning the relationship between the stabilization rate and the properties of ω and Ω are given as well.
DOI : 10.1051/mmnp/201510602

S. Aniţa 1

1 Faculty of Mathematics, “Alexandru Ioan Cuza” University of Iaşi, Iaşi 700506, Romania “Octav Mayer” Institute of Mathematics of the Romanian Academy, Iaşi 700506, Romania
@article{MMNP_2015_10_6_a1,
     author = {S. Ani\c{t}a},
     title = {Stabilization of a {Predator-Prey} {System} with {Nonlocal} {Terms}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {6--16},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {2015},
     doi = {10.1051/mmnp/201510602},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510602/}
}
TY  - JOUR
AU  - S. Aniţa
TI  - Stabilization of a Predator-Prey System with Nonlocal Terms
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 6
EP  - 16
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510602/
DO  - 10.1051/mmnp/201510602
LA  - en
ID  - MMNP_2015_10_6_a1
ER  - 
%0 Journal Article
%A S. Aniţa
%T Stabilization of a Predator-Prey System with Nonlocal Terms
%J Mathematical modelling of natural phenomena
%D 2015
%P 6-16
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510602/
%R 10.1051/mmnp/201510602
%G en
%F MMNP_2015_10_6_a1
S. Aniţa. Stabilization of a Predator-Prey System with Nonlocal Terms. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 6, pp. 6-16. doi : 10.1051/mmnp/201510602. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510602/

[1] B. Ainseba, S. Aniţa Comm. Pure Appl. Anal. 2008 491 512

[2] L.-I. Aniţa, S. Aniţa, V. Arnăutu Appl. Math. Comput. 2013 10231 10244

[3] S. Aniţa Math. Model. Nat. Phenom. 2014 6 19

[4] S. Aniţa, V. Capasso Nonlin. Anal. Real World Appl. 2009 2026 2035

[5] S. Aniţa, W. Fitzgibbon, M. Langlais Discrete Cont. Dyn. Syst.- B 2009 805 822

[6] V. Barbu. Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, Boston, 1993.

[7] V. Barbu. Partial Differential Equations and Boundary value problems. Kluwer Academic Press, Dordrecht, 1998.

[8] V. Capasso, R.E. Wilson SIAM J. Appl. Math. 1997 327 346

[9] K. Deimling. Nonlinear Functional Analysis. Springer-Verlag, Berlin, 1985.

[10] S. Genieys, V. Volpert, P. Auger Math. Modelling Nat. Phenom. 2006 65 82

[11] A. Henrot, El Haj Laamri, D. Schmitt Comm. Pure Appl. Anal. 2012 2429 2443

[12] B. Kawohl. Rearrangements and Convexity of Level Sets in PDE. Springer Lecture Notes in Math. 1150, 1985.

[13] J.-L. Lions. Controlabilité Exacte, Stabilisation et Perturbation de Systemes Distribués. RMA 8, Masson, Paris, 1988.

[14] A. Okubo. Diffusion and Ecological Problems: Mathematical Models. Springer-Verlag, Berlin, 1980.

[15] J.D. Murray. Mathematical Biology. II. Spatial Models and Biomedical Applications, 3rd edition. Springer-Verlag, New York, 2003.

[16] M.H. Protter, H.F. Weinberger. Maximum Principles in Differential Equations. Springer-Verlag, New York, 1984.

[17] J. Smoller. Shock Waves and Reaction Diffusion Equations. Springer Verlag, Berlin, 1983.

[18] V. Volpert, V. Vougalter. Stability and instability of solutions of a nonlocal reaction-diffusion equation when the essential spectrum crosses the imaginary axis. Preprint (2014), https://www.ma.utexas.edu/mparc/index − 14.html.

Cité par Sources :