Voir la notice de l'article provenant de la source EDP Sciences
M. Alfaro 1 ; N. Apreutesei 2 ; F. Davidson 3 ; V. Volpert 4
@article{MMNP_2015_10_6_a0, author = {M. Alfaro and N. Apreutesei and F. Davidson and V. Volpert}, title = {Preface to the {Issue} {Nonlocal} {Reaction-Diffusion} {Equations}}, journal = {Mathematical modelling of natural phenomena}, pages = {1--5}, publisher = {mathdoc}, volume = {10}, number = {6}, year = {2015}, doi = {10.1051/mmnp/201510601}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510601/} }
TY - JOUR AU - M. Alfaro AU - N. Apreutesei AU - F. Davidson AU - V. Volpert TI - Preface to the Issue Nonlocal Reaction-Diffusion Equations JO - Mathematical modelling of natural phenomena PY - 2015 SP - 1 EP - 5 VL - 10 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510601/ DO - 10.1051/mmnp/201510601 LA - en ID - MMNP_2015_10_6_a0 ER -
%0 Journal Article %A M. Alfaro %A N. Apreutesei %A F. Davidson %A V. Volpert %T Preface to the Issue Nonlocal Reaction-Diffusion Equations %J Mathematical modelling of natural phenomena %D 2015 %P 1-5 %V 10 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510601/ %R 10.1051/mmnp/201510601 %G en %F MMNP_2015_10_6_a0
M. Alfaro; N. Apreutesei; F. Davidson; V. Volpert. Preface to the Issue Nonlocal Reaction-Diffusion Equations. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 6, pp. 1-5. doi : 10.1051/mmnp/201510601. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510601/
[1] Rapid travelling waves in the nonlocal Fisher equation connect two unstable states Applied Mathematics Letters 2012 2095 2099
,[2] Bistable travelling waves for nonlocal reaction diffusion equations Discrete Contin. Dyn. Syst. Ser. A. 2014 1775 1791
, ,[3] Stabilization of a predator-prey system with nonlocal terms Math. Model. Nat. Phenom. 2015 6 16
[4] Spatial structures and generalized travelling waves for an integro-differential equation DCDS B 2010 537 557
, , ,[5] Competition of species with intra-specific competition Math. Model. Nat. Phenom. 2008 1 27
, ,[6] Travelling waves for integro-differential equations in population dynamics DCDS B 2009 541 561
, ,[7] N. Apreutesei, V. Volpert. Properness and topological degree for nonlocal reaction-diffusion operators. Abstract and Applied Analysis, 2011, Art. ID 629692, 21 pp.
[8] Properness and topological degree for nonlocal integro-differential systems TMNA 2014 215 229
,[9] Patterns and transitions to instability in an intraspecific competition model with nonlocal diffusion and interaction Math. Model. Nat. Phenom. 2015 17 29
[10] Patterns for competing populations with species specific nonlocal coupling Math. Model. Nat. Phenom. 2015 30 47
,[11] The non-local Fisher-KPP equation: travelling waves and steady states Nonlinearity 2009 2813 2844
, , ,[12] Mathematics of Darwin’s diagram. Math. Model. Nat. Phenom. 2014 5 25
, ,[13] Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model SIAM J. Appl. Math. 1990 1663 1688
[14] J. Clairambault, P. Magal, V. Volpert. Cancer as evolutionary process. ESMTB Communcations, 2014, 17-20.
[15] Existence of waves for a nonlocal reaction-diffusion equation Math. Model. Nat. Phenom. 2010 80 101
,[16] Spectrum of some integro-differential operators and stability of travelling waves Nonlinear Analysis Series A: Theory, Methods and Applications 2011 4455 4473
, ,[17] Stochastic path perturbation approach applied to nonlocal nonlinear equations in population dynamics Math. Model. Nat. Phenom. 2015 48 60
,[18] Mathematical model of evolutionary branching Mathematical and computer modelling 2009 2109 2115
, ,[19] Pattern and waves for a model in population dynamics with nonlocal consumption of resources Mathem. Modelling of Natural Phenomena 2006 63 80
, ,[20] S. Genieys, V. Volpert, P. Auger. Adaptive dynamics: modelling Darwin’s divergence principle. Comptes Rendus Biologies, 329 (11), 876-879 (2006).
[21] Travelling front solutions of a nonlocal Fisher equation J. Math. Biol. 2000 272 284
[22] Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation Dynamical systems 2001 173 192
, ,[23] An age-structured model of bird migration Math. Model. Nat. Phenom. 2015 61 76
,[24] A mathematical model for flash sintering Math. Model. Nat. Phenom. 2015 77 89
, ,[25] A time discretization scheme for a nonlocal degenerate problem modelling resistance spot welding Math Model. Nat. Phenom. 2015 90 112
,[26] Spreading speeds and linear determinacy for two species competition systems with nonlocal dispersal in periodic habitats Math. Model. Nat. Phenom. 2015 113 141
, ,[27] A. Lorz et al. Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. Mathematical Modelling and Numerical Analysis, 47 (2013), 377-399.
[28] Wave-like solutions for nonlocal reaction-diffusion equations: a toy model Math. Model. Nat.Phenom. 2013 33 41
, , ,[29] Concentration in the nonlocal Fisher equation: the Hamilton-Jacobi limit Math. Model. Nat. Phenom. 2007 135 151
,[30] Applying ecological and evolutionary theory to cancer: a long and winding road Evol. Appl. 2013 1 10
[31] Pattern formation in a model of competing populations with nonlocal interactions Physica D 2013 12 22
, ,[32] Generalized travelling waves for perturbed monotone reaction-diffusion systems Nonlinear Analysis. TMA 2001 757 776
,[33] V. Volpert. Elliptic partial differential equations. Volume 1. Fredholm theory of elliptic problems in unbounded domains. Birkhäuser, 2011.
[34] V. Volpert. Elliptic partial differential equations. Volume 2. Reaction-diffusion equations. Birkhäuser, 2014.
[35] Branching and aggregation in self-reproducing systems ESAIM: Proceedings and Surveys 2014 116 129
[36] Pulses and waves for a bistable nonlocal reaction-diffusion equation Applied Mathematics Letters 2015 21 25
[37] On pulse solutions of a reaction-diffusion system in population dynamics Nonlinear Analysis 2015 76 85
, , ,[38] Reaction-diffusion waves in biology Physics of Life Reviews 2009 267 310
,[39] V. Volpert, V. Vougalter. Emergence and propagation of patterns in nonlocal reaction-diffusion equations arising in the theory of speciation. In: “Dispersal, individual movement and spatial ecology", Eds. M. Lewis, Ph. Maini, S. Petrovskii. Springer Applied Interdisciplinary Mathematics Series, in press.
[40] Existence of stationary pulses for nonlocal reaction-diffusion equations Documenta Mathematica 2014 1141 1153
,[41] A. Volpert, Vit. Volpert, Vl. Volpert. Traveling wave solutions of parabolic systems. Translation of Mathematical Monographs, Vol. 140, Amer. Math. Society, Providence, 1994.
[42] The decay rates of traveling waves and spectral analysis for a class of nonlocal evolution equations Math. Model. Nat. Phenom. 2015 142 162
,[43] Trait evolution in two-sex populations Math. Model. Nat. Phenom. 2015 163 181
Cité par Sources :