Preface to the Issue Nonlocal Reaction-Diffusion Equations
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 6, pp. 1-5.

Voir la notice de l'article provenant de la source EDP Sciences

DOI : 10.1051/mmnp/201510601

M. Alfaro 1 ; N. Apreutesei 2 ; F. Davidson 3 ; V. Volpert 4

1 I3M, University Montpellier 2, CC051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
2 Department of Mathematics, “Gheorghe Asachi” Technical University Bd. Carol. I, 700506 Iasi, Romania
3 Department of Mathematics, University of Dundee, Dundee, DD1 4HN, U.K.
4 Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France
@article{MMNP_2015_10_6_a0,
     author = {M. Alfaro and N. Apreutesei and F. Davidson and V. Volpert},
     title = {Preface to the {Issue} {Nonlocal} {Reaction-Diffusion} {Equations}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {1--5},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {2015},
     doi = {10.1051/mmnp/201510601},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510601/}
}
TY  - JOUR
AU  - M. Alfaro
AU  - N. Apreutesei
AU  - F. Davidson
AU  - V. Volpert
TI  - Preface to the Issue Nonlocal Reaction-Diffusion Equations
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 1
EP  - 5
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510601/
DO  - 10.1051/mmnp/201510601
LA  - en
ID  - MMNP_2015_10_6_a0
ER  - 
%0 Journal Article
%A M. Alfaro
%A N. Apreutesei
%A F. Davidson
%A V. Volpert
%T Preface to the Issue Nonlocal Reaction-Diffusion Equations
%J Mathematical modelling of natural phenomena
%D 2015
%P 1-5
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510601/
%R 10.1051/mmnp/201510601
%G en
%F MMNP_2015_10_6_a0
M. Alfaro; N. Apreutesei; F. Davidson; V. Volpert. Preface to the Issue Nonlocal Reaction-Diffusion Equations. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 6, pp. 1-5. doi : 10.1051/mmnp/201510601. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510601/

[1] M. Alfaro, J. Coville Rapid travelling waves in the nonlocal Fisher equation connect two unstable states Applied Mathematics Letters 2012 2095 2099

[2] M. Alfaro, J. Coville, G. Raoul Bistable travelling waves for nonlocal reaction diffusion equations Discrete Contin. Dyn. Syst. Ser. A. 2014 1775 1791

[3] S. Anita Stabilization of a predator-prey system with nonlocal terms Math. Model. Nat. Phenom. 2015 6 16

[4] N. Apreutesei, N. Bessonov, V. Volpert, V. Vougalter Spatial structures and generalized travelling waves for an integro-differential equation DCDS B 2010 537 557

[5] A. Apreutesei, A. Ducrot, V. Volpert Competition of species with intra-specific competition Math. Model. Nat. Phenom. 2008 1 27

[6] N. Apreutesei, A. Ducrot, V. Volpert Travelling waves for integro-differential equations in population dynamics DCDS B 2009 541 561

[7] N. Apreutesei, V. Volpert. Properness and topological degree for nonlocal reaction-diffusion operators. Abstract and Applied Analysis, 2011, Art. ID 629692, 21 pp.

[8] N. Apreutesei, V. Volpert Properness and topological degree for nonlocal integro-differential systems TMNA 2014 215 229

[9] O. Aydogmus Patterns and transitions to instability in an intraspecific competition model with nonlocal diffusion and interaction Math. Model. Nat. Phenom. 2015 17 29

[10] A. Bayliss, V.A. Volpert Patterns for competing populations with species specific nonlocal coupling Math. Model. Nat. Phenom. 2015 30 47

[11] H. Berestycki, G. Nadin, B. Perthame, L. Ryzhik The non-local Fisher-KPP equation: travelling waves and steady states Nonlinearity 2009 2813 2844

[12] N. Bessonov, N. Reinberg, V. Volpert Mathematics of Darwin’s diagram. Math. Model. Nat. Phenom. 2014 5 25

[13] N.F. Britton Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model SIAM J. Appl. Math. 1990 1663 1688

[14] J. Clairambault, P. Magal, V. Volpert. Cancer as evolutionary process. ESMTB Communcations, 2014, 17-20.

[15] I. Demin, V. Volpert Existence of waves for a nonlocal reaction-diffusion equation Math. Model. Nat. Phenom. 2010 80 101

[16] A. Ducrot, M. Marion, V. Volpert Spectrum of some integro-differential operators and stability of travelling waves Nonlinear Analysis Series A: Theory, Methods and Applications 2011 4455 4473

[17] M.A. Fuentes, M.O. Caceres Stochastic path perturbation approach applied to nonlocal nonlinear equations in population dynamics Math. Model. Nat. Phenom. 2015 48 60

[18] S. Genieys, N. Bessonov, V. Volpert Mathematical model of evolutionary branching Mathematical and computer modelling 2009 2109 2115

[19] S. Genieys, V. Volpert, P. Auger Pattern and waves for a model in population dynamics with nonlocal consumption of resources Mathem. Modelling of Natural Phenomena 2006 63 80

[20] S. Genieys, V. Volpert, P. Auger. Adaptive dynamics: modelling Darwin’s divergence principle. Comptes Rendus Biologies, 329 (11), 876-879 (2006).

[21] S.A. Gourley Travelling front solutions of a nonlocal Fisher equation J. Math. Biol. 2000 272 284

[22] S.A. Gourley, M.A.J. Chaplain, F.A. Davidson Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation Dynamical systems 2001 173 192

[23] S.A. Gourley, R. Liu An age-structured model of bird migration Math. Model. Nat. Phenom. 2015 61 76

[24] I.J. Hewitt, A.A. Lacey, R. I. Todd A mathematical model for flash sintering Math. Model. Nat. Phenom. 2015 77 89

[25] N.I. Kavallaris, Y. Yan A time discretization scheme for a nonlocal degenerate problem modelling resistance spot welding Math Model. Nat. Phenom. 2015 90 112

[26] L. Kong, N. Rawal, W. Shen Spreading speeds and linear determinacy for two species competition systems with nonlocal dispersal in periodic habitats Math. Model. Nat. Phenom. 2015 113 141

[27] A. Lorz et al. Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. Mathematical Modelling and Numerical Analysis, 47 (2013), 377-399.

[28] G. Nadin, L. Rossi, L. Ryzhik, B. Perthame Wave-like solutions for nonlocal reaction-diffusion equations: a toy model Math. Model. Nat.Phenom. 2013 33 41

[29] B. Perthame, S. Genieys Concentration in the nonlocal Fisher equation: the Hamilton-Jacobi limit Math. Model. Nat. Phenom. 2007 135 151

[30] F. Thomas Applying ecological and evolutionary theory to cancer: a long and winding road Evol. Appl. 2013 1 10

[31] B.L. Segal, V.A. Volpert, A. Bayliss Pattern formation in a model of competing populations with nonlocal interactions Physica D 2013 12 22

[32] S. Vakulenko, V. Volpert Generalized travelling waves for perturbed monotone reaction-diffusion systems Nonlinear Analysis. TMA 2001 757 776

[33] V. Volpert. Elliptic partial differential equations. Volume 1. Fredholm theory of elliptic problems in unbounded domains. Birkhäuser, 2011.

[34] V. Volpert. Elliptic partial differential equations. Volume 2. Reaction-diffusion equations. Birkhäuser, 2014.

[35] V. Volpert Branching and aggregation in self-reproducing systems ESAIM: Proceedings and Surveys 2014 116 129

[36] V. Volpert Pulses and waves for a bistable nonlocal reaction-diffusion equation Applied Mathematics Letters 2015 21 25

[37] V. Volpert, N. Reinberg, M. Benmir, S. Boujena On pulse solutions of a reaction-diffusion system in population dynamics Nonlinear Analysis 2015 76 85

[38] V. Volpert, S. Petrovskii Reaction-diffusion waves in biology Physics of Life Reviews 2009 267 310

[39] V. Volpert, V. Vougalter. Emergence and propagation of patterns in nonlocal reaction-diffusion equations arising in the theory of speciation. In: “Dispersal, individual movement and spatial ecology", Eds. M. Lewis, Ph. Maini, S. Petrovskii. Springer Applied Interdisciplinary Mathematics Series, in press.

[40] V. Vougalter, V. Volpert Existence of stationary pulses for nonlocal reaction-diffusion equations Documenta Mathematica 2014 1141 1153

[41] A. Volpert, Vit. Volpert, Vl. Volpert. Traveling wave solutions of parabolic systems. Translation of Mathematical Monographs, Vol. 140, Amer. Math. Society, Providence, 1994.

[42] G. Zhao, S. Ruan The decay rates of traveling waves and spectral analysis for a class of nonlocal evolution equations Math. Model. Nat. Phenom. 2015 142 162

[43] P. Zwolenski Trait evolution in two-sex populations Math. Model. Nat. Phenom. 2015 163 181

Cité par Sources :