Forward-Invariant Peeling in Chemical Dynamics: a Simple Case Study
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 5, pp. 126-134.

Voir la notice de l'article provenant de la source EDP Sciences

Forward-invariant peeling aims to produce forward-invariant subset from a given set in phase space. The structure of chemical kinetic equations allows us to describe the general operations of the forward-invariant peeling. For example, we study a simple reaction network with three components A1,A2,A3 and reactions A1 → A2 → A3 → A1, 2A1 ⇌ 3A2 (without any stoichiometric conservation law). We assume that kinetics obey the classical mass action law and reaction rate constants are positive intervals 0 ≤ ki ≤ ki max ∞. Kinetics of this system is described by a system of differential inclusions. We produce forward-invariant sets for these kinetic inclusions from the sets { c | ci ≥ 0, ∑ ci ≥ ε } by the forward-invariant peeling (for sufficiently small ε> 0). In particular, this construction proves persistence of this kinetic system (a positive solution cannot approach the origin even asymptotically, as t → ∞).
DOI : 10.1051/mmnp/201510509

A. N. Gorban 1

1 Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
@article{MMNP_2015_10_5_a8,
     author = {A. N. Gorban},
     title = {Forward-Invariant {Peeling} in {Chemical} {Dynamics:} a {Simple} {Case} {Study}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {126--134},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2015},
     doi = {10.1051/mmnp/201510509},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510509/}
}
TY  - JOUR
AU  - A. N. Gorban
TI  - Forward-Invariant Peeling in Chemical Dynamics: a Simple Case Study
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 126
EP  - 134
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510509/
DO  - 10.1051/mmnp/201510509
LA  - en
ID  - MMNP_2015_10_5_a8
ER  - 
%0 Journal Article
%A A. N. Gorban
%T Forward-Invariant Peeling in Chemical Dynamics: a Simple Case Study
%J Mathematical modelling of natural phenomena
%D 2015
%P 126-134
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510509/
%R 10.1051/mmnp/201510509
%G en
%F MMNP_2015_10_5_a8
A. N. Gorban. Forward-Invariant Peeling in Chemical Dynamics: a Simple Case Study. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 5, pp. 126-134. doi : 10.1051/mmnp/201510509. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510509/

[1] G. Craciun. Toric differential inclusions and a proof of the global attractor conjecture. 2015. arXiv:1501.02860 [math.DS]

[2] G. Craciun, F. Nazarov, C. Pantea SIAM J. Appl. Math. 2013 305 329

[3] A.N. Gorban React. Kinet. Catal. Lett. 1979 187 190

[4] A.N. Gorban React. Kinet. Catal. Lett. 1980 315 319

[5] A.N. Gorban. Equilibrium encircling. Equations of Chemical Kinetics and Their Thermodynamic Analysis. Nauka, Novosibirsk, 1984. (In Russian)

[6] A.N. Gorban Physica A 2013 1111 1121

[7] A.N. Gorban. General H-theorem and entropies that violate the second law. Extended postprint, 2014. arXiv:1212.6767 [cond-mat.stat-mech].

[8] M. Gopalkrishnan, E. Miller, A. Shiu SIAM Journal on Applied Dynamical Systems 2014 758 797

[9] A.I. Vol’pert. Qualitative methods of investigation of equations of chemical kinetics, Institute of Chemical Physics, Chernogolovka, Preprint, 1976. (In Russian)

[10] G.S. Yablonskii, V.I. Bykov, A.N. Gorban, V.I. Elokhin. Kinetic Models of Catalytic Reactions. Elsevier, Amsterdam, The Netherlands, 1991.

Cité par Sources :