Algorithms to Study Large Metabolic Network Dynamics
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 5, pp. 100-118.

Voir la notice de l'article provenant de la source EDP Sciences

We consider a class of systems of differential equations with quadratic nonlinearities. This class describes important biochemical models. We show that systems of this class can realize any structurally stable dynamics. Given a low dimensional dynamics, we describe algorithms that allow to realize this dynamics by a large biochemical network. Some concrete biochemical examples are studied. Moreover, we show how a big system with random kinetic rates can simulate a number of low dimensional ones. The proposed method is applied on Calcium oscillations, extracellular signal-regulated kinase (ERK) signaling pathway and multistationary Mitogen-activated protein kinase cascade system (MAPK) models from biochemistry.
DOI : 10.1051/mmnp/201510507

D. Grigoriev 1 ; S. S. Samal 2 ; S. Vakulenko 3 ; A. Weber 4

1 CNRS, Mathématiques, Université de Lille, Villeneuve d’Ascq, 59655, France
2 Algorithmic Bioinformatics, Bonn-Aachen International Center for Informationtechnology Dahlmannstraße 2, 53113, Bonn, Germany
3 Institute for Mechanical Engineering Problems Bolshoy pr. V. O.61, Saint Petersburg, Russia and ITMO University, Saint Petersburg
4 Institut für Informatik II, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
@article{MMNP_2015_10_5_a6,
     author = {D. Grigoriev and S. S. Samal and S. Vakulenko and A. Weber},
     title = {Algorithms to {Study} {Large} {Metabolic} {Network} {Dynamics}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {100--118},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2015},
     doi = {10.1051/mmnp/201510507},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510507/}
}
TY  - JOUR
AU  - D. Grigoriev
AU  - S. S. Samal
AU  - S. Vakulenko
AU  - A. Weber
TI  - Algorithms to Study Large Metabolic Network Dynamics
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 100
EP  - 118
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510507/
DO  - 10.1051/mmnp/201510507
LA  - en
ID  - MMNP_2015_10_5_a6
ER  - 
%0 Journal Article
%A D. Grigoriev
%A S. S. Samal
%A S. Vakulenko
%A A. Weber
%T Algorithms to Study Large Metabolic Network Dynamics
%J Mathematical modelling of natural phenomena
%D 2015
%P 100-118
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510507/
%R 10.1051/mmnp/201510507
%G en
%F MMNP_2015_10_5_a6
D. Grigoriev; S. S. Samal; S. Vakulenko; A. Weber. Algorithms to Study Large Metabolic Network Dynamics. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 5, pp. 100-118. doi : 10.1051/mmnp/201510507. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510507/

[1] D. Bartel Cell 2009 215 233

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms. MIT Press, 2nd edition, 2001.

[3] E. N. Dancer, P. Poláčik Memoirs of Amer. Math. Society 1999

[4] H. Errami, W. M. Seiler, M. Eiswirth, A. Weber. Computing Hopf bifurcations in chemical reaction networks using reaction coordinates. In V. P. Gerdt, W. Koepf, E. W. Mayr, E. V. Vorozhtsov, editors, Computer Algebra in Scientific Computing, volume 7442 of Lecture Notes in Computer Science, pages 84–97. Springer, Berlin–Heidelberg, 2012.

[5] M. Gary, D. Johnson. Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman, New York, 1979.

[6] K. Gatermann, M. Eiswirth, A. Sensse Journal of Symbolic Computation 2005 1361 1382

[7] H. Haken. Synergetics—An Introduction. Springer, Berlin, 3rd edition, 1983.

[8] A. Halmschlager, L. Szenthe, J. Tóth Electronic Journal of Qualitative Theory of Differential Equations 2004 1 14

[9] D. Heitzler, G. Durand, N. Gallay, A. Rizk, S. Ahn, J. Kim, J. D. Violin, L. Dupuy, C. Gauthier, V. Piketty, P. Crépieux, A. Poupon, F. Clément, F. Fages, R. J. Lefkowitz, E. Reiter Molecular systems biology 2012 590

[10] D. Henry, D. B. Henry. Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics. Springer, Berlin, 1981.

[11] H. Jeong, B. Tombor, R. Albert, Z. Oltvai, A. Barabási Nature 2000 641 654

[12] M. D. Korzuchin. Kolebaltelnie processi v biologicheskih i chimicheskih sistemach. Thesis. 231 pp. Moscow, 1967. In Russian.

[13] N. V. Kuznetsov, G. A. Leonov. Lyapunov quantities and limit cycles of two-dimensional dynamical systems. In Dynamics and Control of Hybrid Mechanical Systems, pp. 7–28. World Scientific, 2010.

[14] A. L. Lehninger, D. L. Nelson, M. M. Cox. Principles of Biochemistry. Worth, New York, 2nd edition, 1993.

[15] A. Lesne Lett. Math. Phys. 2006 235 262

[16] D. Ruelle, F. Takens. Elements of differentiable dynamics and bifurcation theory. Academic Press, Boston, 1989.

[17] S. S. Samal, H. Errami, A. Weber. PoCaB: a software infrastructure to explore algebraic methods for bio-chemical reaction networks. In V. P. Gerdt, W. Koepf, E. W. Mayr, E. V. Vorozhtsov, editors, Computer Algebra in Scientific Computing, volume 7442 of Lecture Notes in Computer Science, pp. 294–307. Springer, Berlin–Heidelberg, 2012.

[18] Y. Shimoni, G. Friedlander, G. Hetzroni Molecular Systems Biology 2007 138

[19] A. M. Zhabotinsky. Konzentrazionnie avtokolebania. Nauka, Moscow, 1974. in Russian.

[20] J. Zhao, H. Yu, J. Luo, Z. W. Cao, Y. X. Li BMC bioinformatics 2006 386

[21] V. Zhdanov Physics Reports 2011 1 42

[22] C. Conradi, D. Flockerzi, J. Raisch 2008 Mathematical biosciences 105 31

Cité par Sources :