Voir la notice de l'article provenant de la source EDP Sciences
D. Grigoriev 1 ; S. S. Samal 2 ; S. Vakulenko 3 ; A. Weber 4
@article{MMNP_2015_10_5_a6, author = {D. Grigoriev and S. S. Samal and S. Vakulenko and A. Weber}, title = {Algorithms to {Study} {Large} {Metabolic} {Network} {Dynamics}}, journal = {Mathematical modelling of natural phenomena}, pages = {100--118}, publisher = {mathdoc}, volume = {10}, number = {5}, year = {2015}, doi = {10.1051/mmnp/201510507}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510507/} }
TY - JOUR AU - D. Grigoriev AU - S. S. Samal AU - S. Vakulenko AU - A. Weber TI - Algorithms to Study Large Metabolic Network Dynamics JO - Mathematical modelling of natural phenomena PY - 2015 SP - 100 EP - 118 VL - 10 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510507/ DO - 10.1051/mmnp/201510507 LA - en ID - MMNP_2015_10_5_a6 ER -
%0 Journal Article %A D. Grigoriev %A S. S. Samal %A S. Vakulenko %A A. Weber %T Algorithms to Study Large Metabolic Network Dynamics %J Mathematical modelling of natural phenomena %D 2015 %P 100-118 %V 10 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510507/ %R 10.1051/mmnp/201510507 %G en %F MMNP_2015_10_5_a6
D. Grigoriev; S. S. Samal; S. Vakulenko; A. Weber. Algorithms to Study Large Metabolic Network Dynamics. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 5, pp. 100-118. doi : 10.1051/mmnp/201510507. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510507/
[1] Cell 2009 215 233
[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms. MIT Press, 2nd edition, 2001.
[3] Memoirs of Amer. Math. Society 1999
,[4] H. Errami, W. M. Seiler, M. Eiswirth, A. Weber. Computing Hopf bifurcations in chemical reaction networks using reaction coordinates. In V. P. Gerdt, W. Koepf, E. W. Mayr, E. V. Vorozhtsov, editors, Computer Algebra in Scientific Computing, volume 7442 of Lecture Notes in Computer Science, pages 84–97. Springer, Berlin–Heidelberg, 2012.
[5] M. Gary, D. Johnson. Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman, New York, 1979.
[6] Journal of Symbolic Computation 2005 1361 1382
, ,[7] H. Haken. Synergetics—An Introduction. Springer, Berlin, 3rd edition, 1983.
[8] Electronic Journal of Qualitative Theory of Differential Equations 2004 1 14
, ,[9] Molecular systems biology 2012 590
, , , , , , , , , , , , , , ,[10] D. Henry, D. B. Henry. Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics. Springer, Berlin, 1981.
[11] Nature 2000 641 654
, , , ,[12] M. D. Korzuchin. Kolebaltelnie processi v biologicheskih i chimicheskih sistemach. Thesis. 231 pp. Moscow, 1967. In Russian.
[13] N. V. Kuznetsov, G. A. Leonov. Lyapunov quantities and limit cycles of two-dimensional dynamical systems. In Dynamics and Control of Hybrid Mechanical Systems, pp. 7–28. World Scientific, 2010.
[14] A. L. Lehninger, D. L. Nelson, M. M. Cox. Principles of Biochemistry. Worth, New York, 2nd edition, 1993.
[15] Lett. Math. Phys. 2006 235 262
[16] D. Ruelle, F. Takens. Elements of differentiable dynamics and bifurcation theory. Academic Press, Boston, 1989.
[17] S. S. Samal, H. Errami, A. Weber. PoCaB: a software infrastructure to explore algebraic methods for bio-chemical reaction networks. In V. P. Gerdt, W. Koepf, E. W. Mayr, E. V. Vorozhtsov, editors, Computer Algebra in Scientific Computing, volume 7442 of Lecture Notes in Computer Science, pp. 294–307. Springer, Berlin–Heidelberg, 2012.
[18] Molecular Systems Biology 2007 138
, ,[19] A. M. Zhabotinsky. Konzentrazionnie avtokolebania. Nauka, Moscow, 1974. in Russian.
[20] BMC bioinformatics 2006 386
, , , ,[21] Physics Reports 2011 1 42
[22] Mathematical biosciences 105 31
, , 2008Cité par Sources :