Genetic Recombination as a Chemical Reaction Network
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 5, pp. 84-99.

Voir la notice de l'article provenant de la source EDP Sciences

The process of genetic recombination can be seen as a chemical reaction network with mass-action kinetics. We review the known results on existence, uniqueness, and global stability of an equilibrium (for all marginal frequencies and all recombination rate constants), from both the population genetics and the reaction networks point of view.
DOI : 10.1051/mmnp/201510506

S. Müller 1 ; J. Hofbauer 2

1 Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenbergerstraße 69, 4040 Linz, Austria
2 Department of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
@article{MMNP_2015_10_5_a5,
     author = {S. M\"uller and J. Hofbauer},
     title = {Genetic {Recombination} as a {Chemical} {Reaction} {Network}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {84--99},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2015},
     doi = {10.1051/mmnp/201510506},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510506/}
}
TY  - JOUR
AU  - S. Müller
AU  - J. Hofbauer
TI  - Genetic Recombination as a Chemical Reaction Network
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 84
EP  - 99
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510506/
DO  - 10.1051/mmnp/201510506
LA  - en
ID  - MMNP_2015_10_5_a5
ER  - 
%0 Journal Article
%A S. Müller
%A J. Hofbauer
%T Genetic Recombination as a Chemical Reaction Network
%J Mathematical modelling of natural phenomena
%D 2015
%P 84-99
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510506/
%R 10.1051/mmnp/201510506
%G en
%F MMNP_2015_10_5_a5
S. Müller; J. Hofbauer. Genetic Recombination as a Chemical Reaction Network. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 5, pp. 84-99. doi : 10.1051/mmnp/201510506. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510506/

[1] E. Akin. The Geometry of Population Genetics, vol. 31 of Lect. Notes in Biomath., Springer, New York, 1979.

[2] E. Baake. Deterministic and stochastic aspects of single-crossover recombination, in Proceedings of the International Congress of Mathematicians. Volume IV, Hindustan Book Agency, New Delhi, 2010, pp. 3037–3053.

[3] R. Bürger. The Mathematical Theory of Selection, Recombination, and Mutation, John Wiley Sons, 2000.

[4] A. Dickenstein, M. Pérez Millán Bull. Math. Biol. 2011 811 828

[5] M. Feinberg Chemical Engineering Science 1989 1819 1827

[6] M. Feinberg Arch. Rational Mech. Anal. 1995 311 370

[7] H. Geiringer Annals Math. Statist. 1944 25 57

[8] A. N. Gorban General H-theorem and entropies that violate the second law Entropy 2014 2408 2432

[9] J. Higgins Journal of Theoretical Biology 1968 293 304

[10] F. Horn Arch. Rational Mech. Anal. 1972 172 186

[11] F. Horn, R. Jackson Arch. Ration. Mech. Anal. 1972 81 116

[12] L. A. Kun, Y. I. Lyubich. The H-theorem and convergence to equilibrium for free multi-locus populations, Kibernetika, (1980), p. 150.

[13] Y. I. Lyubich. Mathematical Structures in Population Genetics, vol. 22 of Biomathematics, Springer-Verlag, Berlin, 1992. Translated from the 1983 Russian original by D. Vulis and A. Karpov.

[14] L. Markus. Asymptotically autonomous differential systems, in Contributions to the theory of nonlinear oscillations, vol. 3, vol. 36 of Annals of Mathematics Studies, Princeton University Press, 1956, pp. 17–29.

[15] K. Mischaikow, H. Smith, H. R. Thieme Trans. Amer. Math. Soc. 1995 1669 1685

[16] S. Müller, G. Regensburger. Generalized mass-action systems and positive solutions of polynomial equations with real and symbolic exponents (invited talk), in Computer Algebra in Scientific Computing, V. P. Gerdt, W. Koepf, W. Seiler, and E. V. Vorozhtsov, eds., vol. 8660 of Lecture Notes in Computer Science, Springer International Publishing, 2014, pp. 302–323.

[17] T. Nagylaki Genetics 1993 627 47

[18] T. Nagylaki, J. Hofbauer, P. Brunovský Journal of Mathematical Biology 1999 103 133

[19] S. Shahshahani. A new mathematical framework for the study of linkage and selection, vol. 211 of Memoirs of the AMS, Amer. Math. Soc., 1979.

[20] D. Siegel, D. Maclean J. Math. Chemistry 2000 89 110

[21] V. M. Vasil’Ev, A. I. Vol’Pert, S. I. Hudjaev Comput. Math. Math. Phys. 1974 187 206

[22] A. I. Vol’pert, S. I. Hudjaev. Analysis in classes of discontinuous functions and equations of mathematical physics, vol. 8 of Mechanics: Analysis, Martinus Nijhoff Publishers, Dordrecht, 1985.

[23] R. Wegscheider Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 1901 849 906

[24] Y. B. Zel’Dovich Zhurnal fizicheskoi khimii 1938 685 687

Cité par Sources :