Generalized Mass Action Law and Thermodynamics of Nonlinear Markov Processes
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 5, pp. 16-46.

Voir la notice de l'article provenant de la source EDP Sciences

The nonlinear Markov processes are measure-valued dynamical systems which preserve positivity. They can be represented as the law of large numbers limits of general Markov models of interacting particles. In physics, the kinetic equations allow Lyapunov functionals (entropy, free energy, etc.). This may be considered as a sort of inheritance of the Lyapunov functionals from the microscopic master equations. We study nonlinear Markov processes that inherit thermodynamic properties from the microscopic linear Markov processes. We develop the thermodynamics of nonlinear Markov processes and analyze the asymptotic assumption, which are sufficient for this inheritance.
DOI : 10.1051/mmnp/201510503

A. N. Gorban 1 ; V. N. Kolokoltsov 2

1 Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
2 Department of Statistics, University of Warwick, Coventry CV4 7AL UK
@article{MMNP_2015_10_5_a2,
     author = {A. N. Gorban and V. N. Kolokoltsov},
     title = {Generalized {Mass} {Action} {Law} and {Thermodynamics} of {Nonlinear} {Markov} {Processes}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {16--46},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2015},
     doi = {10.1051/mmnp/201510503},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510503/}
}
TY  - JOUR
AU  - A. N. Gorban
AU  - V. N. Kolokoltsov
TI  - Generalized Mass Action Law and Thermodynamics of Nonlinear Markov Processes
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 16
EP  - 46
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510503/
DO  - 10.1051/mmnp/201510503
LA  - en
ID  - MMNP_2015_10_5_a2
ER  - 
%0 Journal Article
%A A. N. Gorban
%A V. N. Kolokoltsov
%T Generalized Mass Action Law and Thermodynamics of Nonlinear Markov Processes
%J Mathematical modelling of natural phenomena
%D 2015
%P 16-46
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510503/
%R 10.1051/mmnp/201510503
%G en
%F MMNP_2015_10_5_a2
A. N. Gorban; V. N. Kolokoltsov. Generalized Mass Action Law and Thermodynamics of Nonlinear Markov Processes. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 5, pp. 16-46. doi : 10.1051/mmnp/201510503. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510503/

[1] V.P. Belavkin, V.N. Kolokoltsov On general kinetic equation for many particle systems with interaction, fragmentation and coagulation Proc. Royal Society London A 2003 727 748

[2] G.E. Briggs, J.B.S. Haldane Biochem. J. 1925 338 339

[3] L. Boltzmann Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien 1872 275 370

[4] L. Boltzmann Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien 1887 153 164

[5] C. Cercignani, M. Lampis J. Stat. Phys. 1981 795 801

[6] J.A. Christiansen Adv. Catal. 1953 311 353

[7] R. Clausius Poggendorffs Annalen der Physic und Chemie 1865 353 400

[8] I. Csiszár Magyar. Tud. Akad. Mat. Kutató Int. Közl. 1963 85 108

[9] H. Eyring The Journal of Chemical Physics 1935 107 115

[10] H. Eyring Viscosity, plasticity, and diffusion as examples of absolute reaction rates The Journal of chemical physics 1936 283 291

[11] M. Feinberg Arch. Rat. Mechan. Anal. 1972 187 194

[12] D.T. Gillespie J. Computational Physics 1976 403 434

[13] A.N. Gorban. Equilibrium encircling. Equations of Chemical Kinetics and Their Thermodynamic Analysis. Nauka: Novosibirsk, 1984.

[14] A.N. Gorban Results in Physics 2014 142 147

[15] A.N. Gorban Physica A 2013 1111 1121

[16] A.N. Gorban, P.A. Gorban, G. Judge Entropy 2010 1145 1193

[17] A.N. Gorban, V.I. Bykov, G.S. Yablonski. Essays on chemical relaxation, Nauka, Novosibirsk, 1986. [In Russian].

[18] A.N. Gorban, I.V. Karlin. Invariant Manifolds for Physical and Chemical Kinetics (Lecture Notes in Physics). Springer: Berlin, Germary, 2005.

[19] A.N. Gorban, I. Karlin Bulletin of the American Mathematical Society 2014 186 246

[20] A.N. Gorban, E.M. Mirkes, G.S. Yablonsky Physica A 2013 1318 1335

[21] A.N. Gorban, H.P. Sargsyan, H.A. Wahab Mathematical Modelling of Natural Phenomena 2011 184 262

[22] A.N. Gorban, M. Shahzad Entropy 2011 966 1019

[23] A.N. Gorban, G.S. Yablonskii Chem. Eng. Sci. 2011 5388 5399

[24] D. Grigoriev, P.D. Milman Advances in Mathematics 2012 3389 3428

[25] F. Horn, R. Jackson Arch. Ration. Mech. Anal. 1972 81 116

[26] K.M. Hangos Entropy 2010 772 797

[27] M. Kac. Foundations of kinetic theory. In: Neyman, J., ed. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Vol. 3., University of California Press, Berkeley, California, 171–197.

[28] V.N. Kolokoltsov. Nonlinear Markov processes and kinetic equations. Cambridge Tracks in Mathematics 182, Cambridge Univ. Press, 2010.

[29] V.N. Kolokoltsov Russian Journal of Mathematical Physics 2003 268 295

[30] V.N. Kolokoltsov J. Stat. Phys. 2004 1621 1653

[31] V.N. Kolokoltsov Advanced Studies in Contemporary Math 2006 9 38

[32] V.N. Kolokoltsov Markov Processes and Related Fields 2006 95 138

[33] V.N. Kolokoltsov J. Stat. Phys. 2007 585 642

[34] M.D. Korzukhin. Oscillatory processes in biological and chemical systems, Nauka, Moscow, 1967. [in Russian]

[35] K. Kowalski Chemical Physics Letters 1993 167 170

[36] G.N. Lewis Proceedings of the National Academy of Sciences 1925 179 183

[37] J.C. Maxwell Philosophical Transactions of the Royal Society of London 1867 49 88

[38] L. Michaelis, M. Menten Biochem. Z. 1913 333 369

[39] T. Morimoto J. Phys. Soc. Jpn. 1963 328 331

[40]

[41] H.-A. Lorentz Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien 1887 115 152

[42] I. Prigogine, R. Balescu Physica 1959 302 323

[43]

[44] L.A. Segel, M. Slemrod SIAM Rev. 1989 446 477

[45] E.C.G. Stueckelberg Théorème H et unitarité de S Helv. Phys. Acta 1952 577 580

[46] A.I. Volpert, S.I. Khudyaev. Analysis in classes of discontinuous functions and equations of mathematical physics. Nijoff, Dordrecht, The Netherlands, 1985.

[47] G. Yaari, A. Nowak, K. Rakocy, S. Solomon Eur. Phys. J. B 2008 505 513

[48] G.S. Yablonskii, V.I. Bykov, A.N. Gorban, V.I. Elokhin. Kinetic Models of Catalytic Reactions. Elsevier, Amsterdam, The Netherlands, 1991.

Cité par Sources :