Hysteresis of Contact Angle of Sessile Droplets
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 4, pp. 61-75.

Voir la notice de l'article provenant de la source EDP Sciences

A theory of contact angle hysteresis on smooth, homogeneous solid substrates is developed in terms of shape of disjoining/conjoining pressure isotherm and quasi-equilibrium phenomena. It is shown that all contact angles, θ, in the range θr, which are different from the unique equilibrium value θe, correspond to the state of slow “microscopic” advancing or receding motion of the liquid if θeθr, respectively. This “microscopic” motion almost abruptly becomes fast “macroscopic” advancing or receding motion after the contact angle reaches the critical values θa or θr, correspondingly. The values of the static receding, θr, and static advancing,θa, contact angles in cylindrical capillaries were calculated earlier, based on the shape of disjoining/conjoining pressure isotherm. It is shown that both advancing contact and receding contact angles of a droplet on a solid substrate depends on the drop volume and are not a unique characteristic of the liquid-solid system. The suggested mechanism of the contact angle hysteresis of droplets has direct experimental confirmation.
DOI : 10.1051/mmnp/201510403

I. Kuchin 1 ; V. Starov 1

1 Department of Chemical Engineering, Loughborough University, LE11 3TU, UK.
@article{MMNP_2015_10_4_a2,
     author = {I. Kuchin and V. Starov},
     title = {Hysteresis of {Contact} {Angle} of {Sessile} {Droplets}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {61--75},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2015},
     doi = {10.1051/mmnp/201510403},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510403/}
}
TY  - JOUR
AU  - I. Kuchin
AU  - V. Starov
TI  - Hysteresis of Contact Angle of Sessile Droplets
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 61
EP  - 75
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510403/
DO  - 10.1051/mmnp/201510403
LA  - en
ID  - MMNP_2015_10_4_a2
ER  - 
%0 Journal Article
%A I. Kuchin
%A V. Starov
%T Hysteresis of Contact Angle of Sessile Droplets
%J Mathematical modelling of natural phenomena
%D 2015
%P 61-75
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510403/
%R 10.1051/mmnp/201510403
%G en
%F MMNP_2015_10_4_a2
I. Kuchin; V. Starov. Hysteresis of Contact Angle of Sessile Droplets. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 4, pp. 61-75. doi : 10.1051/mmnp/201510403. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510403/

[1] V. M. Starov, M. G. Velarde J. Phys.: Condens. Matter 2009 464121

[2] V Starov, M Velarde, C Radke. Wetting and Spreading Dynamics. In ”Surfactanrt Science Series”, v. 138, Taylor, 2007, 515 pp.

[3] N. V. Churaev, V. D. Sobolev, V. M. Starov J Colloid Interface Sci 2002 80 83

[4] N.V. Churaev, V.D. Sobolev Adv. Colloid Interf. Sci. 2007 15 23

[5] I.V. Kuchin, O.K. Matar, R.V. Craster, V.M. Starov Colloid and Interface Science Communications 2014 18 22

[6] V. Starov Colloid Polym Sci 2013 261 270

[7] E. Chibowski Adv. Colloid Interface Sci. 2003 149 172

[8] C. W. Extrand, Y. Kumagai J. Colloid Interface Sci. 1997 378 383

[9] C. W. Extrand J. Colloid Interface Sci. 2002 136 142

[10] Z.M. Zorin, V.D. Sobolev, N.V. Churaev. Surface Forces in Thin Films and Disperse Systems, Nauka, Moscow, 1972, p. 214. [in Russian].

[11] E.A. Romanov, D.T. Kokorev, N.V. Churaev Int. J. Heat Mass Transfer 1973 549 554

[12] D. Platikanov, G.P. Yampolskaya, N. Rangelova, Zh. Angarska, L.E. Bobrova, V.N. Izmailova Colloid J., USSR 1981 177 180

[13] N. Rangelova, D. Platikanov 1984 126

[14] N.I. Rangelova, V.N. Izmailova, D.N. Platikanov, G.P. Yampol’Skaya, S.D. Tulovskaya Colloid J., USSR 1990 442 447

[15] D. Platikanov, M. Nedyalkov, V. Petkova Adv. Colloid Interface Sci. 2003 185 203

[16] V. Petkova, D. Platikanov, M. Nedyalkov Adv. Colloid Interface Sci. 2003 37 51

[17] B.V. Derjaguin, Z.M. Zorin Zh. Fiz. Khim 1955 1755 1770

[18] Z.M. Zorin, A.V. Novikova, A.K. Petrov, N V. Churaev. Surface Forces in Thin Films and Stability of Colloids, Nauka, Moscow (1974), p.94 [in Russian].

[19] H. Sagan. Introduction to the Calculus of Variations, Dover reprint, New York, 1992, chapter 7.

[20] J. Drelich J. Adhesion 1997 31 51

[21] R.J. Good, M.N. Koo J. Colloid Interface Sci. 1979 283 292

[22] G.L. Mack J Phys Chem. 1936 159 167

[23] V.S. Veselovsky, V.N. Pertsev J. Phys Chem (USSR Academy of Sciences) 1936 245 259

[24] C.O. Timmons, W.A. Zisman J. Colloid Interface Sci. 1966 165 171

[25] A.M. Schwartz J. Colloid Interface Sci. 1980 404 408

[26] K.S. Lee, C.Y. Cheah, R.J. Copleston, V.M. Starov, K. Sefiane Colloids and Surfaces A: Physicochem. Eng. Aspects 2008 63 72

[27] S. Semenov, A. Trybala, R. Rubio, N. Kovalchuk, V. Starov, M. Velarde Adv Colloid Interface Sci 2014 382 398

[28] A.N. Frumkin Zh. Fiz. Khim. 1938 337 345

[29] B.V. Derjaguin Zh. Fiz. Khim. 1940 137 147

[30] Z. M. Zorin, V. P. Romanov, N. V. Churaev Colloid & Polymer Sci. 1979 968 972

[31] R.A. Hayes, J. Ralston Colloids Surfaces 1993 137 146

Cité par Sources :