Brownian Motion in the Fluids with Complex Rheology
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 4, pp. 1-43.

Voir la notice de l'article provenant de la source EDP Sciences

Theory of Brownian motion of a fine particle in a viscoelastic fluid continuum is developed. The rheology of the embedding medium is described in terms of classical structure (spring-and-damper) schemes. It is shown that a great variety of conceivable ramifications of such structures could be reduced to an effective Jeffreys model: a Maxwell chain shunted by a damper. This scheme comprises just three material parameters: two for viscosities (fast and slow) and one for elasticity. For the thermal motion of a particle in such a fluid, the set of Langevin equations is derived. In the cases of 1D translational and 2D orientational (rotation about fixed axis) motions, the time dependencies of mean-square displacements are found analytically. It is shown that in a Jeffreys fluid, the Brownian motion has three regimes: fast diffusion (short times), slow diffusion (long times) and a crossover of those resulting in virtual localization (dynamic confinement) of the particle. Experimental evidence for that taken from the literature is presented. The developed formalism is applied to the particles with “frozen-in” dipole moments, whose orientational motion is a combination of Brownian diffusion and regular excitation by an AC field. The dynamic susceptibilities are calculated for the ensembles of particles liable for either 2D or 3D rotations. Comparison shows that the out-of-phase part of the susceptibility χ′′(ω) in 3D case differs considerably from that of 2D case. Function χ(ω) for the forced 3D rotary diffusion in a Jeffreys fluid is found for the first time. In our view, it would be useful for realistic theoretical interpretation of microrheology data and the more so for estimating the particle-mediated AC field-induced heating (magnetic hyperthermia) in viscoelastic fluid media.
DOI : 10.1051/mmnp/201510401

V. V. Rusakov 1, 2 ; Yu. L. Raikher 1, 2 ; R. Perzynski 3

1 Institute of Continuous Media Mechanics, Russian Academy of Sciences, Ural Branch, 1 Korolyov street, Perm, 614013, Russia
2 Perm National Research Polytechnic University, 29a Komsomol avenue, 614990, Perm, Russia
3 Université Pierre et Marie Curie – PHENIX, UMR 8234, 4 place Jussieu, 75005 Paris, France
@article{MMNP_2015_10_4_a0,
     author = {V. V. Rusakov and Yu. L. Raikher and R. Perzynski},
     title = {Brownian {Motion} in the {Fluids} with {Complex} {Rheology}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {1--43},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2015},
     doi = {10.1051/mmnp/201510401},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510401/}
}
TY  - JOUR
AU  - V. V. Rusakov
AU  - Yu. L. Raikher
AU  - R. Perzynski
TI  - Brownian Motion in the Fluids with Complex Rheology
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 1
EP  - 43
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510401/
DO  - 10.1051/mmnp/201510401
LA  - en
ID  - MMNP_2015_10_4_a0
ER  - 
%0 Journal Article
%A V. V. Rusakov
%A Yu. L. Raikher
%A R. Perzynski
%T Brownian Motion in the Fluids with Complex Rheology
%J Mathematical modelling of natural phenomena
%D 2015
%P 1-43
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510401/
%R 10.1051/mmnp/201510401
%G en
%F MMNP_2015_10_4_a0
V. V. Rusakov; Yu. L. Raikher; R. Perzynski. Brownian Motion in the Fluids with Complex Rheology. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 4, pp. 1-43. doi : 10.1051/mmnp/201510401. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510401/

[1] M. L. Gardel, M. T. Valentine, D. A. Weitz. Microrheology. In: Microscale Diagnostic Techniques, K. Breuer, Ed. New York: Springer, 2005.

[2] T. A. Waigh Reports on Progress in Physics 2005 685 742

[3] A. Yao, M. Tassieri, M. Padgett, J. Cooper Lab on Chip 2009 2568 2575

[4] P.-H. Wu, C. M. Hale, W.-C. Chen, J. S. H. Lee, Y. Tseng, D. Wirtz Nature Protocols 2012 155 170

[5] S. Dutz, R. Hergt Int. J. Hyperthermia 2013 790 800

[6] S. Dutz, R. Hergt Nanotechnology 2014

[7] E. Amstad, J. Kohlbrecher, E. Müller, T. Schweizer, M. Textor, E. Reimhult Nano Letters 2011 1664 1670

[8] R. Deckers, C. Debeissat, P. Y. Fortin, C. T. W. Moonen, F. Couillaud Int. J. Hyperthermia 2012 441 450

[9] M. B. Bannwarth, S. Ebert, M. Lauck, U. Ziener, S. Tomcin, G. Jakob, K. Münnemann, V. Mailänder, A. Musyanovych, K. Landfester Macromolecular Bioscience 2014 1205 1214

[10] B. Mehdaoui, A. Meffre, J. Carrey, S. Lachaize, L.-M. Lacroix, M. Gougeon, D. Chaudret, M. Respaud Advanced Functional Materials 2011 4573 4581

[11] C. Martinez-Boubeta, K. Simeonidis, A. Makridis, M. Angelakeris, O. Iglesias, P. Guardia, A. Cabot, L. Yedra, S. Estradé, E. Peiró, Z. Saghi, P. A. Midgley, I. Conde-Leborán, D. Serantes, D. Baldomir Scientific Reports 2013

[12] R. Di Corato R., A. Espinosa, L. Lartigue, M. Tharaud, S. Chat, T. Pellegrino, C. Ménager, F. Gazeau, C. Wilhelm Biomaterials 2014 6400 6411

[13] Yu. L. Raikher, V. I. Stepanov J. Magnetism and Magnetic Materials 2014 421 427

[14] D. Robert, K. Aubertin, J.-C. Bacri, C. Wilhelm Physical Review E 2012

[15] E. Roeben, L. Roeder, S. Teusch, M. Effertz, U. K. Deiters, A. M. Schmidt Colloid and Polymer Science 2014 2013 2023

[16] A. Ya. Malkin, A. I. Isayev. Rheology: Conceptions, Methods, Applications. Toronto, Chemtech Publishers, 2005.

[17] P. Oswald. Rheophysics: The Deformation and Flow of Matter. Cambridge, Cambridge University Press, 2009.

[18] L. D. Landau, E. M. Lifshitz. Fluid Mechanics. Oxford, Pergamon Press, 1959.

[19] A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen Annalen der Physik 1905 549 560

[20] H. Haken. Synergetics. Non-equilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology. Berlin, Springer, 1978. 2nd ed.

[21] H. Risken. The Fokker-Planck Equation. Springer Series in Synergetics. 1984. Vol. 18. Ed. H. Haken. Berlin, Springer.

[22] V. I. Klyatskin. Dynamics of Stochastic Systems. Amsterdam, Elsevier, 2005.

[23] Yu. L. Klimontovich. Statistical Theory of Open Systems. Dordrecht, Kluwer, 1995.

[24] W. T. Coffey, Yu. P. Kalmykov. The Langevin Equation. World Scientific, Singapore. 2012. 3rd ed.

[25] P. Langevin Comptes Rendus Acad. Sci., (Paris) 1908 530 533

[26] C. Wilhelm, F. Gazeau, J.-C. Bacri Physical Review E. 2003

[27] Yu. L. Raikher, V. V. Rusakov J. Experimental and Theoretical Physics 2010 883 889

[28] Yu. L. Raikher, V. V. Rusakov, R. Perzynski Soft Matter 2013 10857 10865

[29] L. D. Landau, E. M. Lifshitz. Statistical Physics. New York, Pergamon Press, 1980. 3rd ed. Pt.1.

[30] J. H. Van Zanten, K. P. Rufener Physical Review E 2000 5389 5396

[31] F. Cardinaux, L. Cipelletti, F. Scheefold, P. Schurtenberger Europhysics Letters 2002 738 744

[32] A. Ochab-Marcinek, R. Holyst Soft Matter 2011 7366 7374

[33] T. K. Piskorz, A. Ochab-Marcinek J. Physical Chemistry B 2014 4906 4912

[34] Yu. L. Raikher, V. V. Rusakov J. Experimental and Theoretical Physics 1996 988 995

[35] V. S. Volkov J. Experimental and Theoretical Physics 1990 93 98

[36] J.-L. Déjardin Physical Review E 1998 2808 2817

[37] V. S. Volkov, A. I. Leonov J. Chemical Physics 1996 5922 5931

[38] V. S. Volkov, A. I. Leonov Physical Review E 2001

[39] A. Baura, S. Ray, M. K. Sen, B. C. Bag J. Applied Physics 2013

[40] P. G. de Gennes. Scaling Concepts in Polymer Physics. Ithaca, Cornell University Press, 1979.

[41] Yu. L. Raikher, V. I. Stepanov Advances in Chemical Physics 2004 419 588

[42] M. Abramovitz, I. A. Stegun, Eds. Handbook of Mathematical Functions. New York, Dover, 1965.

Cité par Sources :