Leaders Do Not Look Back, or Do They?
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 3, pp. 212-231.

Voir la notice de l'article provenant de la source EDP Sciences

We study the effect of adding to a directed chain of interconnected systems a directed feedback from the last element in the chain to the first. The problem is closely related to the fundamental question of how a change in network topology may influence the behavior of coupled systems. We begin the analysis by investigating a simple linear system. The matrix that specifies the system dynamics is the transpose of the network Laplacian matrix, which codes the connectivity of the network. Our analysis shows that for any nonzero complex eigenvalue λ of this matrix, the following inequality holds: |ℑλ|/|ℜλ| ≤ cot π/n. This bound is sharp, as it becomes an equality for an eigenvalue of a simple directed cycle with uniform interaction weights. The latter has the slowest decay of oscillations among all other network configurations with the same number of states. The result is generalized to directed rings and chains of identical nonlinear oscillators. For directed rings, a lower bound σc for the connection strengths that guarantees asymptotic synchronization is found to follow a similar pattern: σc= 1 / 1-cos(2π/n). Numerical analysis revealed that, depending on the network size n, multiple dynamic regimes co-exist in the state space of the system. In addition to the fully synchronous state a rotating wave solution occurs. The effect is observed in networks exceeding a certain critical size. The emergence of a rotating wave highlights the importance of long chains and loops in networks of oscillators: the larger the size of chains and loops, the more sensitive the network dynamics becomes to removal or addition of a single connection.
DOI : 10.1051/mmnp/201510316

A. N. Gorban 1 ; N. Jarman 1, 2 ; E. Steur 2 ; C. van Leeuwen 2 ; I. Yu. Tyukin 1, 3

1 University of Leicester, Department of Mathematics, United Kingdom
2 KU Leuven, Department of Psychology, Laboratory for Perceptual Dynamics, Belgium
3 Saint-Petersburg State Electrotechnical University, Department of Automation and Control Processes, Russia
@article{MMNP_2015_10_3_a15,
     author = {A. N. Gorban and N. Jarman and E. Steur and C. van Leeuwen and I. Yu. Tyukin},
     title = {Leaders {Do} {Not} {Look} {Back,} or {Do} {They?}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {212--231},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2015},
     doi = {10.1051/mmnp/201510316},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510316/}
}
TY  - JOUR
AU  - A. N. Gorban
AU  - N. Jarman
AU  - E. Steur
AU  - C. van Leeuwen
AU  - I. Yu. Tyukin
TI  - Leaders Do Not Look Back, or Do They?
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 212
EP  - 231
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510316/
DO  - 10.1051/mmnp/201510316
LA  - en
ID  - MMNP_2015_10_3_a15
ER  - 
%0 Journal Article
%A A. N. Gorban
%A N. Jarman
%A E. Steur
%A C. van Leeuwen
%A I. Yu. Tyukin
%T Leaders Do Not Look Back, or Do They?
%J Mathematical modelling of natural phenomena
%D 2015
%P 212-231
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510316/
%R 10.1051/mmnp/201510316
%G en
%F MMNP_2015_10_3_a15
A. N. Gorban; N. Jarman; E. Steur; C. van Leeuwen; I. Yu. Tyukin. Leaders Do Not Look Back, or Do They?. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 3, pp. 212-231. doi : 10.1051/mmnp/201510316. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510316/

[1] I. Belykh, V. Belykh, M. Hasler Phys. Rev. E 2000 6332 6345

[2] V. Belykh, I. Belykh, M. Hasler Physica D. 2004 159 187

[3] I. Belykh, V. Belykh, M. Hasler Physica D. 2004 188 206

[4] A.N. Bocharov, V.I. Bykov React. Kinet. Catal. Lett. 1987 75 80

[5] B. Bollobas. Modern graph theory. Springer, 1998.

[6] L. Boltzmann. Lectures on gas theory. Univ. of California Press, Berkeley, CA, USA, 1964.

[7] V.K. Chandrasekar, J.H. Sheeba, B. Subash, M. Lakshmanan, J. Kurths Physica D. 2014 36 48

[8] P.J. Davis. Circulant matrices. AMS Chelsea Publising, New York, 1994.

[9] N. Dmitriev, E. Dynkin Izv. Akad. Nauk SSSR Ser. Mat. 1946 167 184

[10] K. Engelborghs, T. Luzyanina, G. Samaey. DDE-BIFTOOL v. 2.00 user manual: a Matlab package for bifurcation analysis of delay differential equations. Technical Report TW-330, Department of Computer Science, K.U.Leuven, Leuven, Belgium, 2001.

[11] R. Fitzhugh Bull. Math. Biophysics 1955 257 278

[12] C. Gaiteri, J.E. Rubin Front. Comput. Neurosci. 2011 10

[13] G.C. Garcia, A. Lesne, C.C. Hilgetag, M-T. Hutt Phys. Rev. E. 2014 052805

[14] P. Gong, C. Van Leeuwen Europhys. Lett. 2004 328 333

[15] A.N. Gorban Results in Physics 2014 142 147

[16] A.N. Gorban, O. Radulescu, A.Y. Zinovyev Chem. Eng. Sci. 2010 2310 2324

[17] A.N. Gorban, G.S. Yablonskii Chem. Eng. Sci. 2011 5388 5399

[18] E.M. Izhikevich. Dynamical Systems in Neuroscience. The MIT Press, 2008.

[19] N. Jarman, C. Trengove, E. Steur, I. Tyukin, C. Van Leeuwen Cognitive Neurodynamics 2014 479 497

[20] F.I. Karpelevich Izv. Akad. Nauk SSSR Ser. Mat. 1951 361 383

[21] H.K. Khalil. Nonlinear Systems. Prentice Hall, 2002.

[22] J.P. LaSalle. Some extensions of Liapunov’s second method. IRE Transactions on Circuit Theory, CT-7 (1969), 520–527.

[23] T. Mäki-Marttunen, J. Aćimović, K. Ruohonen, M.-L. Linne PLOS ONE 2013

[24] L. Onsager I. Phys. Rev. 1931 405 426

[25] A.Y. Pogromskiy Int. J. Bifurc. Chaos App. Sci. Eng. 1998 295 319

[26] A.Y. Pogromskiy, N. Kuznetsov, G.A. Leonov. Pattern generation in diffusive networks: how do those brainless centipedes walk? In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC). Orlando, USA, 2011, 7849 – 7854.

[27] A.Y. Pogromskiy, G. Santoboni, H. Nijmeijer Physica D 2002 65 87

[28] O. Radulescu, A.N. Gorban, A.Y. Zinovyev, A. Lilienbaum BMC Systems Biology 2008

[29] E. Steur, I. Tyukin, H. Nijmeijer Physica D 2009 2119 2128

[30] R.C. Tolman. The Principles of Statistical Mechanics. Oxford University Press, London, 1938.

[31] N.G. Van Kampen Physica 1973 1 22

[32] B. Van Der Pol Phil. Mag. 1926 978 992

[33] R. Wegscheider Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme Monatshefte für Chemie / Chemical Monthly 1901 849 906

[34] G.S. Yablonskii, V.I. Bykov, A.N. Gorban, V.I. Elokhin. Kinetic Models of Catalytic Reactions (Series “Comprehensive Chemical Kinetics”, Volume 32). Elsevier, Amsterdam, The Netherlands, 1991.

[35] J. Yang, W.J. Bruno, W.S. Hlavacek, J. Pearson Biophys. J. 2006 1136 1141

Cité par Sources :